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We use experiments to inquire
about what “reality” does.

This talk is
<; about filling
this gap
) )
Theory & The goal is to understand in the

most general; that's usually also
the simplest.
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Theory

10. ELECTROWEAK MODEL AND
CONSTRAINTS ON NEW PHYSICS

Particle Data Group,
Barnett et al

Revised August 1999 by J. Erler and P. Langacker (Univ. of
Pennsylvania).
10.1 Introduction

10.2 Renormalization and radiative corrections
10.3 Cross-section and asymmetry formulas

105 Expementa el “Clear statement of how the world
1oL, ettt P works formulated mathematically in

. "
The standard electroweak model is based on the gauge group (1] te m Of e q u at IONS
SU(2) x U(1), with gauge bosons W}, i = 1,2,3, and B, for
the SU(2) and U(1) factors, respectively, and the corresponding
gauge coupling constants g and g’. The left-handed fermion fields

P = (:1) and (3,‘) of the i** fermion family transform as doublets

under SU(2), where d} = Z]— V;j d;, and V is the Cabibbo-Kobayashi-
Maskawa mixing matrix. (Constraints on V are discussed in the
section on the Cabibbo-Kobayashi-Maskawa mixing matrix.) The
right-handed fields are 8U(2) singlets. In the minimal model there are

-+
three fermion families and a single complex Higgs doublet ¢ = (‘io )

After spontanecus symmetry breaking the Lagrangian for the
fermion fields is

_ H
L= % (ia—mi—?”m)wi

g —_— — —_
"mgfﬁi 7#(1—’)‘5)(T+ WAT'FT W#)@'Ji

Additional term goes here
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Experiment
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What does the Data Mean?

» Digitization:
“Address”: what detector “Value”: What the
element took the reading electronics wrote
down
Look up type, calibration info
Check valid,
convert to useful
 / units/form

Look up/calculate spatial position

N

Draw

5
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Graphical Representation

s ALEPH DALI Run=15768  Ewt=5906
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Bridging the Gap

The imperfect measurement of
a (set of) interactions in the detector
Very strong selection

Raw Data
Reconstruction
A unique happening:
Events Run 21007, event 3916
which contains a H -> xx

l Analysis decay

Observables

Specific lifetimes, probabilities, masses,

A

branching ratios, interactions, etc

Phenomenology

D)

Theory &
Parameters

A small number of general equations, with specific
input parameters (perhaps poorly known)
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Physu:.s Selection at LHC
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Trigger and Data Acquisition

Trigger

Collision Detectors Event Full Storage Offline

fragments event analysis
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Trigger

» Task: inspect detector information and
provide a first decision on whether to keep
the event or throw it out

» The trigger is a function of event data,
detector conditions and parameters

REJECTED
ACCEPTED

» Detector data not (all) promptly available

» Selection function highly complex

=T(...) is evaluated by successive approximations
TRIGGER LEVELS

10 20/07/08
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Trigger Levels

» Level-1
- Hardwired processors (ASIC, FPGA, ...)
> Pipelined massive parallel
- Partial information, quick and simple event

characteristics (pt, total energy, etc.) ~ 1:10°
> 3-4 ps maximum latency
» Level-2 (optional)
- Specialized processors using partial data ~ 1:10¢

» High Level

- Software running in processor farms

- Complex algorithms using complete event information

- Latency at the level of factions of second

- Qutput rate adjusted to what can be afforded ~ 1:10°

N M Data Acquisition in the LHC Detectors  20/07/08 11




Trigger Levels and Rates

Rate (Hz) LEVEL-1 Trigger 40 MHz
QED _ Z\II Hardwired processors (ASIC, FPGA) N

, MASSIVE PARALLEL
/ Pipelined Logic Systems Detectors

108

Front end pipelines

SECOND LEVEL TRIGGERS 100
kHz SPECIALIZED processors
(feature extraction and global logic)

<4—-01-1sec —p @

106
W,Z

Readout buffers

104

*é\ -75\ ~)él\ jé\ - Switching network
Yy !
~é\ -)é$\ —B. =8~ @ Processor farms

HIGH LEVEL TRIGGERS 1kHz
Standard processor FARMs = :
102 ¢ 25ns - Us ms sec v ‘

10° 106 10+ 102 10° ' “Traditional”: 3 physical levels
Available processing time

Higgs
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Trigger Level-1 Algorithms

» Physics facts: N
> pp collisions produce mainly hadrons N

> Interesting physics has particles (leptons and
hadrons) with large transverse momenta:

- W—ev: M(W)=80 GeV/c?; Pr(e) ~ 30-40 GeV
y H(] 20 GeV)—yy: PT(y) ~ 50-60 GeV

ACI raniiniraomaoantc
Cl..)l\.. IC\./'UIICIIICIIL.)

Impose high thresholds on particles

- Implies distinguishing partlcle types; possible
for electrons, muons and “jets”; beyond that,
need complex algorithms

<

° Cd

Data Acquisition in the LHC Detectors  20/07/08
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Trigger/DAQ Summary for LHC

No.Levels Level-1 Event Readout Filter Out
Trigger (HW/SW) Rate (kHz) Size (MB) Bandw.(GB/s) MB/s (Event/s)
1/2 75 1.5 10 300 (200)
1/1 100 1 100 100 (100)
1/1 1000 0.04 40 80 (2000)

e 911 eopy 10 86.5 5 1250 (14)
il 200 2.5 200 (80)

p-p

- -».rw o ..-.;ulu-
Data Acquisition in the LHC
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Implementation technologies

» Readout and Level-1 Trigger

> Custom electronics (ASIC, FPGA), radiation
hard/tolerant

- Optical detector links (1-2 Gb/s)

» Event Building
- Gigabit Ethernet links and switches

» High-Level Trigger

- Rack mounted PCs (~2500 nodes/experiment)

» Online computing facilities

- Large power/cooling requirements
- Local data storage O(100 TB)

Data Acquisition in the LHC Detectors  20/07/08
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Selection Continues Off-line
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Ofﬂine Processing Stages & Datasets
\,

Event Summary processed
dmedo event filter Data (ESD) data
(selectlon &
reconstructlon)

\

raw
data

7

\

batch ﬂﬂ
= {} e )

\ Analysis Object Data (AOD)
(extracted by physics toplc)

event
reconstruction

ﬁﬂ Q N\ i § individual ﬁ
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event
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Physics Software

» The scientific software needed to process this huge
amount of data from the LHC detectors is
developed by the LHC collaborations

> Must cope with the unprecedented conditions and
challenges (trigger rate, data volumes, etc.)

- Each collaboration has written millions of lines of code
» Modern technologies and methods

- Object-oriented programming languages and frameworks

- Re-use of a number of generic and domain-specific ‘open-
source’ packages

» The organization of this large software production
activity is by itself a huge challenge

> Large number of developers distributed worldwide
- Integration and validation require large efforts

Data Acquisition in the LHC Detectors  20/07/08
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Common Physics Software

» Data processing applications are based on
frameworks
> Ensure coherency and integration
» Every experiment has a framework for basic
services and various specialized frameworks:
- Event model, detector description, visualization,
persistency, interactivity, simulation,
calibrations, etc.
» Core libraries and services provide basic
functionality. Examples:
- Geant4 - Simulation of particles through matter
- ROOT - Data storage and analysis framework
» Extensive use of generic software packages
> GUI, graphics, utilities, math, db, etc.

Data Acquisition in the LHC Detectors

Software Structure

Applications

Event — Calib.
Desc.

Experiment Framework

Data Distrib.

Simulation Mngmt.|| Analysis

Core Libraries

non-HEP specific
software packages

20/07/08
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Software Components

v

v

v

>

Foundation Libraries

> Basic types

> Utility libraries

- System isolation libraries

Mathematical Libraries

- Special functions

- Minimization, Random
Numbers

Data Organization

> Event Data

- Event Metadata (Event
collections)

- Detector Conditions Data
Data Management Tools

> Object Persistency

o Data Distribution and
plication

Simulation Toolkits
» Event generators
» Detector simulation
Statistical Analysis Tools
» Histograms, N-tuples
» Fitting
Interactivity and User Interfaces
» GUI
» Scripting
» Interactive analysis
Data Visualization and Graphics
» Event and Geometry
displays
Distributed Applications
Parallel processing
Grid computing

21 Pere Mato, CERN/PH



Monte Carlo simulation’s role

Raw Data
Calculate what imperfect detector 4 Treat that as real
would have seen for those events data and reconstruct
v It
Events

Randomly pick decay paths, 7y Compare to original to
lifetimes, etc for a number of nderctand efficiency

understand efficiency

events

Observables

Calculate expected branching ratios

aQ D)

Theory &
Parameters
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MC Generators

» Many MC generators and tools are available to the
experiments provided by a solid community

- Each experiment chooses the tools more adequate for their
physics

» Example: ATLAS alone uses currently
- Generators
- AcerMC: Zbb~, tt~, single top, tt~bb~, Wbb~
- Alpgen (+ MLM matching): W+jets, Z+jets, QCD multijets
- Charbydis: black holes
- HERWIG: QCD multijets, Drell-Yan, SUSY...
- Hijing: Heavy lons, Beam-gas..
- MC@NLO: tt~, Drell-Yan, boson pair production
- Pythia: QCD multijets, B-physics, Higgs production...
> Decay packages
- TAUOLA: Interfaced to work with Pythia, Herwig and Sherpa,
- PHOTOS: Interfaced to work with Pythia, Herwig and Sherpa,
Mg, Used in B-physics channels.
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Detector Simulation - Geant 4

» Geant4 has become an established tool, in production for the
majority of LHC experiments during the past two years, and
in use in many other HEP experiments and for applications in
medical, space and other fields

» On going work in the physics validation
» Good example of common software

ALICE : ~3 million volumes

24  Pere Mato, CERN/PH




Analysis — Brief History

» 1980s: mainframes, batch jobs, histograms back. Painful.

» Late 1980s, early 1990s: PAW arrives.
> NTUPLEs bring physics to the masses

> Workstations with “large” disks (holding data locally) arrive;
looping over data, remaking plots becomes easy

» Firmly in the 1990s: laptops arrive;
> Physics-in-flight; interactive physics in fact.
» Late 1990s: ROOT arrives

o A|| vVOou rn|||r| An ho‘Fnrn Aand mnra In [ ima
yoO Ouil U0 PC re and more. In C++4+ this time.

> FORTRAN is still around. The “ROOT-TUPLE” is born
- Side promise: reconstruction and analysis form a continuum

» 2000s: two categories of analysis physicists: those who can
only work off the ROOT-tuple and those who can
create/modify it

‘ 000s: WiFi arrives; Physics-in—-meeting
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Application Software on the Grid

» Experiments have developed tools to facilitate the
usage of the Grid

» Example: GANGA

(0]

o

(0]

o

Help configuring and submitting analysis jobs (Job Wizard)
Help users to keep track of what they have done
Hide completely all technicalities
Provide a palette of possible choices and specialized plug-
Ins:

- pre-defined application conflguratlons

- batch/grid systems, etc. e M) ﬁ?’i
Backend | | Where to run | s )

Single desktop for a variety of tasks‘ 3 (i " bata read by application]
Friendly user interface is essential SRR - C2t2 vritten by application|

( Rule for dividing into subjobs |
Splitter j

eraer | Rule for combining outputs |
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Summary

» The online multi-level trigger is essential to select
interesting collisions (1 in 10°-107)
- Level-1: custom hardware, huge fanin/out problem, fast
algorithms on coarse-grained, low-resolution data
- HTL: software/algorithms on large processor farm of PCs
> Large DAQ system built with commercial components

» The experiments will produce about 7 PB/year raw
data

» Reconstruction and analysis to get from raw data to
physics results

- Huge programs (107 lines of code) developed by 100’s of
physicists

- Unprecedented need of computing resources

\\ Data Acquisition in the LHC Detectors  20/07/08
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