Theoretical Concepts in Particle Physics (5)

Yuval Grossman

Cornell

HEP theory (5)

Yesterday...

- Symmetries
- *L* is:
 - The most general one that is invariant under some symmetries
 - We work up to some order (usually 4)
- How do we "built" invariants?

Invariant of complex numbers

- \checkmark U(1) is rotation in 1d complex space
- Each complex number comes with a q that tells us how much it rotates
- When we rotate the space by an angle θ , the number rotate as

$$X \to e^{iq\theta} X$$

• Consider $q_X = 1$, $q_Y = 2$, $q_Z = 3$ and write 3rd and 4th order invariants

$$XX^*YY^*$$
 X^2Y^*

Y. Grossman

HEP theory (5)

Invariant of complex numbers

- U(1) is rotation in 1d complex space
- Each complex number comes with a q that tells us how much it rotates
- When we rotate the space by an angle θ , the number rotate as

$$X \to e^{iq\theta} X$$

• Consider $q_X = 1$, $q_Y = 2$, $q_Z = 3$ and write 3rd and 4th order invariants

 XX^*YY^* X^2Y^* XYZ^* X^3Z^* $Y^2X^*Z^*$

Y. Grossman

HEP theory (5)

SU(2)

- U(2) is rotation in 2d complex space. We have $U(2) = SU(2) \times U(1)$
- SU(2) is localy the same as rotation in 3d real space
- Rotations in this space are non-Abelian (non-commutative)
- It depends on the representation: scalar, spinor, vector
- Spin in QM is described by SU(2) rotations, so we use the same language to describe it
- For the SM all we care is that $1/2 \times 1/2 \ni 0$ so we know how to generate singlets
- How can we generate invarints from spin 1/2 and spin 3/2?

SU(3)

- U(3) is rotation in 3d complex space. We have $U(3) = SU(3) \times U(1)$
- The representations we care about are singlets, triplets and octets
- Unlike SU(2), in SU(3) we have complex representations, 3 and $\overline{3}$
- The three quarks form a triplet (the three colors)
- To form a singlet we need to know that

$$3 \times \overline{3} \ni 1$$
 $3 \times 3 \times 3 \ni 1$

This is why we have baryons and mesons

A game

A game calls "building invariants"

- Symmetry is $SU(3) \times SU(2) \times U(1)$
 - U(1): Add the numbers (\overline{X} has charge -q)
 - SU(2): $2 \times 2 \ni 1$ and recall that 1 is a singlet
 - SU(3): we need $3 \times \overline{3} \ni 1$ and $3 \times 3 \times 3 \ni 1$

Fields are

- $Q(3,2)_1 \qquad U(3,1)_4 \qquad D(3,1)_{-2} \qquad H(1,2)_3$
- What 3rd and 4th order invariants can we built?
 - $(HH^*)^2$ H^3 UDD QUD HQU^*
- HW: Find more invariants

Y. Grossman

HEP theory (5)

Lorentz invariants

HEP theory (5)

Lorentz invariants

- The representations we care about are
 - Singlet: Spin zero (scalars, denote by ϕ)
 - LH and RH fields: Spin half (fermions, ψ_L , ψ_R)
 - Vector: Spin one (gauge boson, denote by A_{μ})
- Fermions are more complicated

$$\mathcal{L} \sim \bar{\psi} \partial_{\mu} \gamma^{\mu} \psi$$

- Since \mathcal{L} has dimension 4, ψ is dimension 3/2
- For fermions when we expand up to 4th order we can have at most two fermion fields
- Under Lorentz, the basic fields are left-handed and right-handed. A mass term must involve both $m\bar{\psi}_L\psi_R$

Local symmetires

HEP theory (5)

Local symmetry

Basic idea: rotations depend on x and t

$$\phi(x_{\mu}) \to e^{iq\theta}\phi(x_{\mu}) \xrightarrow{local} \phi(x_{\mu}) \to e^{iq\theta(x_{\mu})}\phi(x_{\mu})$$

- It is kind of logical and we think that all imposed symmetries in Nature are local
- The kinetic term $|\partial_{\mu}\phi|^2$ in not invariant
- We want a kinetic term (why?)
- We can save the kinetic term if we add a field that is
 - Massless
 - Spin 1
 - Adjoint representation: q = 0 for U(1), triplet for SU(2), and octet for SU(3)

Gauge symmetry

- Fermions are called matter fields. What they are and their representation is an input
- Gauge fields are known as force fields

Local symmetries \Rightarrow force fields

HEP theory (5)

Gauge symmetry

The coupling of the new field is via the kinetic term. Recall classical electromagnetism

$$H = \frac{p^2}{2m} \Rightarrow H = \frac{(p - qA_i)^2}{2m}$$

In QFT, for a local U(1) symmetry and a field with charge q

$$\partial_{\mu} \to D_{\mu} \qquad D_{\mu} = \partial_{\mu} + iqA_{\mu}$$

We get interaction from the kinetic term

$$|D_{\mu}\phi|^{2} = |\partial_{\mu}\phi + iqA_{\mu}\phi|^{2} \ni qA\phi^{2} + q^{2}A^{2}\phi^{2}$$

 \checkmark The interaction is proportional to q

Y. Grossman

HEP theory (5)

Accidental symmetries

- We only impose local symmetries
- Yet, because we truncate the expansion, we can get symmetries as output
- They are global, and are called accidental
- Example: U(1) with X(q = 1) and Y(q = -4)

$$V(XX^*, YY^*) \Rightarrow U(1)_X \times U(1)_Y$$

- X^4Y breaks this symmetry
- In the SM baryon and lepton numbers are accidental symmetries

HEP theory (5)

HEP theory (5)

Breaking a symmetry

Y. Grossman

HEP theory (5)

SSB

- By choosing a ground state we break the symmetry
- We choose to expend around a point that does not respect the symmetry
- PT only works when we expand around a minimum

What is the different between a broken symmetry and no symmetry?

SSB implies relations between parameters

Y. Grossman

HEP theory (5)

SSB

Symmetry is $x \to -x$ and we keep up to x^4

$$f(x) = a^2 x^4 - 2b^2 x^2$$
 $x_{\min} = \pm b/a$

We choose to expand around +b/a and use $u \rightarrow x - b/a$

$$f(x) = 4b^2u^2 + 4bau^3 + a^2u^4$$

- **•** No $u \rightarrow -u$ symmetry
- **•** The $x \to -x$ symmetry is hidden
- A general function has 3 parameters $c_2u^2 + c_3u^3 + c_4u^4$
- SSB implies a relation between them

$$c_3^2 = 4c_2c_4$$

Y. Grossman

HEP theory (5)

SSB in QFT

When we expand the field around a minimum that is not invariant under a symmetry

$$\phi \to v + H$$

- It breaks the symmetries that ϕ is not a singlet under
- Masses to other fields via Yukawa interactions

$$\phi X^2 \to (v+H)X^2 = vX^2 + \dots$$

Gauge fields of the broken symmetries also get mass

$$|D_{\mu}\phi|^{2} = |\partial_{\mu}\phi + iqA_{\mu}\phi|^{2} \ni A^{2}\phi^{2} \to v^{2}A^{2}$$

Y. Grossman

HEP theory (5)

The SM

HEP theory (5)

The SM

Input: Symmetries and fields

Symmetry: 4d Poincare and

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

- Fields:
 - 3 copies of QUDLE fermions

$$Q_L(3,2)_{1/6} \quad U_R(3,1)_{2/3} \quad D_R(3,1)_{-1/3}$$

 $L_L(1,2)_{-1/2} \quad E_R(1,1)_{-1}$

One scalar

 $\phi(1,2)_{+1/2}$

Y. Grossman

HEP theory (5)

Then Nature is described by

- Output: the most general \mathcal{L} up to dim 4
- This model has a $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$ accidental symmetry
- Initial set of measuremnts to find the parameters
 - SSB: $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$
 - Fermion masses, gauge couplings and mixing angles

The SM pass (almost) all of it tests

Y. Grossman

HEP theory (5)

Nature



Y. Grossman

HEP theory (5)

Infinities and all that

HEP theory (5)

Why we "cut" at ϕ^4 ?

- Any theory have limits: We call them UV and IR limits
- Higher dim. operators are more sensitive to the UV
- \bullet d = 3 we can claculate. d = 4 we need to be carefull
- Just like the energy of a point like charged particle

$$U \propto \int |E|^2 d^V \propto \int \frac{\alpha^2}{r^4} r^2 dr \sim \left. \frac{1}{r} \right|_0^\infty \to \infty$$

- We can still calculate it if we care about change of energy of a test particle
- What really takes care of this infinity?
- Higher dim operators must point into a deeper theory