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Yesterday...

Symmetries

L is:

The most general one that is invariant under some
symmetries

We work up to some order (usually 4)

How do we “built” invariants?
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Invariant of complex numbers

U(1) is rotation in 1d complex space

Each complex number comes with a q that tells us how
much it rotates

When we rotate the space by an angle θ, the number
rotate as

X → eiqθX

Consider qX = 1, qY = 2, qZ = 3 and write 3rd and 4th
order invariants

XX∗Y Y ∗ X2Y ∗
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Invariant of complex numbers

U(1) is rotation in 1d complex space

Each complex number comes with a q that tells us how
much it rotates

When we rotate the space by an angle θ, the number
rotate as

X → eiqθX

Consider qX = 1, qY = 2, qZ = 3 and write 3rd and 4th
order invariants

XX∗Y Y ∗ X2Y ∗ XY Z∗ X3Z∗ Y 2X∗Z∗
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SU(2)

U(2) is rotation in 2d complex space. We have
U(2) = SU(2) × U(1)

SU(2) is localy the same as rotation in 3d real space

Rotations in this space are non-Abelian
(non-commutative)

It depends on the representation: scalar, spinor, vector

Spin in QM is described by SU(2) rotations, so we use
the same language to describe it

For the SM all we care is that 1/2 × 1/2 ∋ 0 so we know
how to generate singlets

How can we generate invarints from spin 1/2 and spin
3/2?
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SU(3)

U(3) is rotation in 3d complex space. We have
U(3) = SU(3) × U(1)

The representations we care about are singlets, triplets
and octets

Unlike SU(2), in SU(3) we have complex

representations, 3 and 3̄

The three quarks form a triplet (the three colors)

To form a singlet we need to know that

3 × 3̄ ∋ 1 3 × 3 × 3 ∋ 1

This is why we have baryons and mesons
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A game

A game calls “building invariants”

Symmetry is SU(3) × SU(2) × U(1)

U(1): Add the numbers (X̄ has charge −q)

SU(2): 2 × 2 ∋ 1 and recall that 1 is a singlet

SU(3): we need 3 × 3̄ ∋ 1 and 3 × 3 × 3 ∋ 1

Fields are

Q(3, 2)1 U(3, 1)4 D(3, 1)−2 H(1, 2)3

What 3rd and 4th order invariants can we built?

(HH∗)2 H3 UDD QUD HQU∗

HW: Find more invariants
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Lorentz invariants
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Lorentz invariants

The representations we care about are

Singlet: Spin zero (scalars, denote by φ)

LH and RH fields: Spin half (fermions, ψL, ψR)

Vector: Spin one (gauge boson, denote by Aµ)

Fermions are more complicated

L ∼ ψ̄∂µγ
µψ

Since L has dimension 4, ψ is dimension 3/2

For fermions when we expand up to 4th order we can
have at most two fermion fields

Under Lorentz, the basic fields are left-handed and

right-handed. A mass term must involve both mψ̄LψR
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Local symmetires
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Local symmetry

Basic idea: rotations depend on x and t

φ(xµ) → eiqθφ(xµ)
local
−−→ φ(xµ) → eiqθ(xµ)φ(xµ)

It is kind of logical and we think that all imposed
symmetries in Nature are local

The kinetic term |∂µφ|2 in not invariant

We want a kinetic term (why?)

We can save the kinetic term if we add a field that is

Massless

Spin 1

Adjoint representation: q = 0 for U(1), triplet for
SU(2), and octet for SU(3)
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Gauge symmetry

Fermions are called matter fields. What they are and
their representation is an input

Gauge fields are known as force fields

Local symmetries ⇒ force fields
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Gauge symmetry

The coupling of the new field is via the kinetic term.
Recall classical electromagnetism

H =
p2

2m
⇒ H =

(p− qAi)
2

2m

In QFT, for a local U(1) symmetry and a field with
charge q

∂µ → Dµ Dµ = ∂µ + iqAµ

We get interaction from the kinetic term

|Dµφ|2 = |∂µφ+ iqAµφ|2 ∋ qAφ2 + q2A2φ2

The interaction is proportional to q
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Accidental symmetries

We only impose local symmetries

Yet, because we truncate the expansion, we can get
symmetries as output

They are global, and are called accidental

Example: U(1) with X(q = 1) and Y (q = −4)

V (XX∗, Y Y ∗) ⇒ U(1)X × U(1)Y

X4Y breaks this symmetry

In the SM baryon and lepton numbers are accidental
symmetries

Y. Grossman HEP theory (5) CERN, July 7, 2015 p. 13



SSB
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Breaking a symmetry
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SSB

By choosing a ground state we break the symmetry

We choose to expend around a point that does not
respect the symmetry

PT only works when we expand around a minimum

What is the different between a broken symmetry and no
symmetry?

SSB implies relations between parameters
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SSB

Symmetry is x → −x and we keep up to x4

f(x) = a2x4 − 2b2x2 xmin = ±b/a

We choose to expand around +b/a and use u → x− b/a

f(x) = 4b2u2 + 4bau3 + a2u4

No u → −u symmetry

The x → −x symmetry is hidden

A general function has 3 parameters c2u
2 + c3u

3 + c4u
4

SSB implies a relation between them

c2
3 = 4c2c4
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SSB in QFT

When we expand the field around a minimum that is
not invariant under a symmetry

φ → v +H

It breaks the symmetries that φ is not a singlet under

Masses to other fields via Yukawa interactions

φX2 → (v +H)X2 = vX2 + ...

Gauge fields of the broken symmetries also get mass

|Dµφ|2 = |∂µφ+ iqAµφ|2 ∋ A2φ2 → v2A2
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The SM
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The SM

Input: Symmetries and fields

Symmetry: 4d Poincare and

SU(3)C × SU(2)L × U(1)Y

Fields:

3 copies of QUDLE fermions

QL(3, 2)1/6 UR(3, 1)2/3 DR(3, 1)
−1/3

LL(1, 2)
−1/2 ER(1, 1)−1

One scalar

φ(1, 2)+1/2
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Then Nature is described by

Output: the most general L up to dim 4

This model has a U(1)B × U(1)e × U(1)µ × U(1)τ

accidental symmetry

Initial set of measuremnts to find the parameters

SSB: SU(2)L × U(1)Y → U(1)EM

Fermion masses, gauge couplings and mixing
angles

The SM pass (almost) all of it tests
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Nature
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Infinities and all that
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Why we “cut” at φ4?

Any theory have limits: We call them UV and IR limits

Higher dim. operators are more sensitive to the UV

d = 3 we can claculate. d = 4 we need to be carefull

Just like the energy of a point like charged particle

U ∝
∫

|E|2dV ∝
∫ α2

r4
r2dr ∼

1

r

∣

∣

∣

∣

∞

0
→ ∞

We can still calculate it if we care about change of
energy of a test particle

What really takes care of this infinity?

Higher dim operators must point into a deeper theory
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