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Example of 2: Least squares straight line fitting

y                                                                             Data = {xi, yi  i}

Theory:   y= a + bx

x

Statistical issues:

1) Is data consistent with straight line?

(Goodness of Fit)

2) What are the gradient and intercept (and their uncertainties (and correlation))?

(Parameter Determination)

Will deal with issue 2) first

N.B. 1.   Method can be used for other functional forms

e.g.  y = a +b/x +c/x2 +…….

y = a + b sin + c sin(2) + d sin(3) +……

y = a exp(-bx)

N.B. 2   Least squares is not the only method
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3Minimise S w.r.t. parameters a and b

Not best 

straight line fit
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Straight Line Fit

N.B. L.S.B.F. passes through (<x>, <y>)



Uncertainties on parameter(s)

5

S

In parabolic approx,  = 1/1/2 d2S/d2

1                                                  (mneumonic)

best 

With more than one param, replace S() by S(1, 2, 3, …..), 

and covariance matrix E is given by 
1 ∂2S   

E-1 =        2∂i∂j

S= Smax -1 contour 

1 .     22

21                        2
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Summary of straight line fitting

• Plot data

Bad points

Estimate a and b (and uncertainties)

• a and b from formula

• Errors on a’ and b

• Cf calculated values with estimated

• Determine Smin (using a and b)

• ν = n – p

• Look up in χ2 tables

• If probability too small, IGNORE RESULTS 

• If probability a “bit” small, scale uncertainties?

Asymptotically
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Summary of straight line fitting

• Plot data

Bad points

Estimate a and b (and uncertainties)

• a and b from formula

• Errors on a’ and b                                         Parameter Determination

• Cf calculated values with estimated

• Determine Smin (using a and b)

• ν = n – p                                                         Goodness of Fit

• Look up in χ2 tables

• If probability too small, IGNORE RESULTS 

• If probability a “bit” small, scale uncertainties?

If theory is correct; data unbiassed, ~ Gaussian and asymptotic;

 is correct; etc,   then Smin has 2 distribution
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Properties of 2 distribution
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Properties of 2 distribution, contd.
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Goodness of Fit

2 Very general

Needs binning                                   y

Not sensitive to sign of deviation

Run Test   Not sensitive to mag. of devn.

x

Kolmogorov- Smirnov

Aslan-Zech

Review:    Mike Williams, “How good are your fits? Unbinned multivariate

goodness-of-fit tests in high energy physics”

http://arxiv.org/pdf/1006.3019.pdf

Book:        D’Agostino and Stephens, “Goodness of Fit techniques”

http://arxiv.org/pdf/1006.3019.pdf
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Goodness of Fit: 

Kolmogorov-Smirnov

Compares data and model cumulative plots

Uses largest discrepancy between dists.

Model can be analytic or MC sample

Uses individual data points

Not so sensitive to deviations in tails   

(so variants of K-S exist)

Not readily extendible to more dimensions

Distribution-free conversion to p; depends on n 

(but not when free parameters involved – needs MC)
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Goodness of fit: ‘Energy’ test

Assign +ve charge to data       ; -ve charge to M.C.

Calculate ‘electrostatic energy E’ of charges

If distributions agree, E ~ 0

If distributions don’t overlap, E is positive                  v2

Assess significance of magnitude of E by MC

N.B.                                                                                                             v1

1) Works in many dimensions

2) Needs metric for each variable (make variances similar?)

3) E ~ Σ qiqj f(Δr = |ri – rj|) ,    f = 1/(Δr + ε) or –ln(Δr + ε) 

Performance insensitive to choice of small ε

See Aslan and Zech’s paper at: 

http://www.ippp.dur.ac.uk/Workshops/02/statistics/program.shtml
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PARADOX

Histogram with 100 bins

Fit with 1 parameter

Smin: χ
2 with NDF = 99  (Expected χ2 = 99 ± 14)

For our data, Smin(p0) = 90

Is p2 acceptable if S(p2) = 115?

1) YES.    Very acceptable χ2 probability

2) NO.      σp from S(p0 +σp) = Smin +1 = 91

But S(p2) – S(p0) = 25

So p2 is 5σ away from best value
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Likelihoods
for determining parameters

What it is

How it works: Resonance

Error estimates

Detailed example: Lifetime

Several Parameters

Do’s and Dont’s with L ****
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Simple example:  Angular distribution 

y = N (1 +  cos2)

yi = N (1 +  cos2i)

= probability density of observing i, given 

L() =  yi

= probability density of observing the data set yi, given 

Best estimate of  is that which maximises L

Values of  for which L is very small are ruled out

Precision of estimate for  comes from width of L distribution

(Information about parameter  comes from shape of exptl distribution of cos)

CRUCIAL to normalise y           N = 1/{2(1 + /3)}

cos  cos  

 = -1                    large                                   L
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How it works: Resonance

y ~               Γ/2

(m-M0)
2 + (Γ/2)2

m                                                           m

Vary M
0

Vary Γ
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Conventional to consider  l = ln(L)  = Σ ln(pi)
If L is  Gaussian, l is parabolic 
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Parameter uncertainty with likelihoods

Range of likely values of param μ from width of L or l dists.

If L(μ) is Gaussian, following definitions of σ are equivalent:

1) RMS of L(µ)

2) 1/√(-d2lnL / dµ2) (Mnemonic)

3) ln(L(μ0±σ) = ln(L(μ0)) -1/2

If L(μ) is non-Gaussian, these are no longer the same

“Procedure 3) above still gives interval that contains the 
true value of parameter μ with 68% probability”

Errors from 3) usually asymmetric, and asym errors are messy.

So choose param sensibly 

e.g 1/p rather than p;       τ or λ
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Moments Max Like Least squares

Easy? Yes, if… Normalisation, 

maximisation messy

Minimisation

Efficient? Not very Usually best Sometimes = Max Like

Input Separate events Separate events Histogram

Goodness of fit Messy No (unbinned) Easy

Constraints No Yes Yes

N dimensions Easy if …. Norm, max messier Easy

Weighted events Easy Errors difficult Easy

Bgd subtraction Easy Troublesome Easy

Uncertainty estimates Observed spread,

or analytic

- ∂2l     

∂pi∂pj

∂2S      

2∂pi∂pj

Main feature Easy Best for params Goodness of Fit
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NORMALISATION FOR LIKELIHOOD

 dx )|P(x 

data         param

e.g.  Lifetime fit to t1, t2,………..tn

t



b ig  t o o

 R e a s o n a b le

MUST be independent of 

/1Missing

/)|(



 - tetPINCORRECT
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ΔlnL = -1/2 rule
If L(μ) is Gaussian, following definitions of σ are 

equivalent:

1) RMS of L(µ)

2) 1/√(-d2L/dµ2)

3) ln(L(μ0±σ) = ln(L(μ0)) -1/2

If L(μ) is non-Gaussian, these are no longer the same

“Procedure 3) above still gives interval that contains the 

true value of parameter μ with 68% probability”

Heinrich: CDF note 6438 (see CDF Statistics 

Committee Web-page)

Barlow: Phystat05
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COVERAGE

How often does quoted range for parameter include param’s true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with μ

Study coverage of different methods for Poisson parameter  μ, from 

observation of number of events n

Hope for:
Nominal

value

100%



)(C
Undercoverage region



Practical example of Coverage

Poisson counting experiment

Observed number of counts n

Poisson parameter μ

P(n|μ) = e-μ μn/n! 

Best estimate of μ = n

Range for μ given by ΔlnL = 0.5 rule. Coverage should 

be 68%.

What does Coverage look like as a function of μ?

C            ?

μ
25
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Coverage : L approach (Not frequentist)

P(n,μ) = e-μμn/n!    (Joel Heinrich CDF note 6438)

-2 lnλ< 1         λ = P(n,μ)/P(n,μbest)       UNDERCOVERS
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Great?Good?Bad

Lmax

Frequency

Unbinned Lmax and Goodness of Fit?

Find params by maximising L

So larger L better than smaller L

So Lmax gives Goodness of Fit??

Monte Carlo distribution

of unbinned Lmax
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Example 

L =

cos θ

pdf (and likelihood) depends only on cos2θi

Insensitive to sign of cosθi

So data can be in very bad agreement with expected distribution

e.g. all data with cosθ < 0 

and Lmax does not know about it.

Example of general principle

3/1

cos1

cos

2
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Conclusions re Likelihoods

How it works, and how to estimate errors

(ln L) = 0.5 rule and coverage

Several Parameters

Likelihood does not guarantee coverage

Lmax and Goodness of Fit

Do lifetime and coverage problems on 

question sheet



Tomorrow
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Bayes and Frequentist approaches:

What is probability?

Bayes theorem

Does it make a difference

Examples from Physics and from everyday life

Relative merits

Which do we use?



Last time
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Comparing data with 2 hypotheses

H0 = background only  (No New Physics)

H1 = background + signal (Exciting New Physics)

Specific example: Discovery of Higgs


