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The Standard Model

The Standard Model Lagrangian is determined by symmetries

I space-time symmetry: global Poincaré-symmetry

I internal symmetries: local SU(n) gauge symmetries

LSM = −1
4
F a
µνF

aµν + i ψ̄D/ψ gauge sector

+|DH |2 − V (H) EWSB sector

+ψiλijψjH + h.c. flavour sector

+NiMijNj ν-mass sector
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Outline

I QED and QCD as gauge theories

I QCD for the LHC

I Breaking gauge symmetries:

the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism
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Spontaneous symmetry breaking

A SU(n) gauge theory

L = −1

4
F a
µνF

aµν + ψ
i
(iγµDµ −m)ji ψj

has massless gauge bosons Aa
µ:

To preserve gauge invariance of the Lagrangian, the Aa
µ transform under gauge

transformations as

Aa
µ → Aa

µ − f abcAb
µ(x)ωc(x) +

1

g
[∂µω

a(x)] ,

and thus a mass term
L ⊃ M2

A A
a
µA

aµ

is not gauge invariant.

This is what we want for QED (massless photon) and QCD (massless gluons),

but not for a gauge theory of the weak interactions.
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The masses of the electroweak gauge bosons are provided by the mechanism of
spontaneous symmetry breaking: the Lagrangian maintains its symmetry, but
the state of lowest energy is not invariant under gauge transformations.

Consider a potential of the form

V (~r) = µ2~r ·~r + λ(~r ·~r)2

For µ2 > 0, the minimum is at

~r = 0

The potential and the ground state at ~r = 0 are symmetric under rotations.
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Let us consider a gauge theory with a complex scalar field Φ:

L = (DµΦ)∗DµΦ− 1

4
FµνF

µν − V (Φ)

and
V (Φ) = −µ2Φ∗Φ + λ|Φ∗Φ|2

The Lagrangian is invariant under U(1) gauge transformations Φ→ e−iω(x)Φ.

The minimum of the potential occurs at

Φ = e iΘ
√
µ2

2λ
≡ e iΘ

v√
2

where Θ can take any value from 0 to 2π.

The symmetry breaking occurs in the choice made for the value of Θ. For any
specific choice of Θ we have

Φ→ e−iωΦ = e−iωe iΘ
v
√

2
= e i(Θ−ω) v

√
2

= e iΘ
′ v
√

2
,

i.e. the ground state is not invariant under gauge transformations.
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In QFT we would say that the field Φ has a non-zero vacuum expectation value:

〈0|Φ|0〉 =
v√
2
.

Let us expand Φ around the vacuum expectation value,

Φ(x) =
ρ(x)√

2
e iφ(x)/v =

1√
2

(v + H(x))e iφ(x)/v ≈ 1√
2

(v + H(x) + iφ(x)),

and express the Lagrangian in terms of the fields H and φ.

The potential becomes

V = µ2H2 + µ
√
λ(H3 + φ2H) +

λ

4
(H4 + φ4 + 2H2φ2) +

µ4

4λ
.

There is a mass term for the field H:

V ⊃ µ2H2 ≡ MH

2
H2 with MH =

√
2µ ,

but no mass term for the field φ.

Thus φ represents a massless particle, called “Goldstone boson”.
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For the kinetic term we find

(DµΦ)∗DµΦ ⊃ 1

2
∂µH∂

µH +
1

2
g 2v 2AµA

µ + g 2vAµA
µH .

The gauge boson has acquired a mass term:

(DµΦ)∗DµΦ ⊃ 1

2
g 2v 2AµA

µ ≡ 1

2
M2

AAµA
µ with MA = gv

and there is an interaction between the gauge field and the field H:

(DµΦ)∗DµΦ ⊃ g 2vAµA
µH = gMAAµA

µH .

Note that the Goldstone boson φ is unphysical and can be removed from the
Lagrangian by choosing a particular gauge (unitary gauge).

Let us count the number of degrees of freedom:

I A complex scalar field Φ (2) + a massless gauge boson Aµ (2) = 4

I A real scalar field H (1) + a massive gauge boson Aµ (3) = 4

The 2 d.o.f. of the complex field Φ correspond to the field H and the
longitudinal component of the massive gauge boson.
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The Standard Model with one family

Empirically we know that the weak interactions violate parity and that the
couplings are of the form vector minus axial-vector (V − A):

ψγµψ − ψγµγ5ψ ,

where γ5 ≡ iγ0γ1γ2γ3.

We define left- and right-chiral components of spinor fields as

ψ = ψL + ψR where ψL/R =
1

2
(1∓ γ5)ψ .

[In the limit where the fermions are massless, chirality becomes helicity, which
is the projection of the spin on the direction of the motions.]

The (V − A) structure implies that only left-chiral fermions participate in the
weak interactions:

ψγµψ − ψγµγ5ψ = ψγµ(1− γ5)ψ = ψLγµψL .
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To write down a gauge invariant Lagrangian for the (electro-)weak interactions,
we have to choose the gauge group. Let us try

SU(2)L × U(1)Y .

The SU(2)L group has 3 generators, T a = σa/2, a gauge coupling denoted by
g and three gauge bosons W a

µ. It is called weak isospin.

The U(1) group is not the gauge group of QED, but that of hypercharge Y .
The corresponding coupling and gauge boson are denoted by g ′ and Bµ.

As matter content (for the first family), we have

qL ≡
(

uL
dL

)
; uR ; dR ; lL ≡

(
ν
eL

)
; eR ; νR .

The model is constructed such that SU(2)L gauge transformations only act on
qL and lL,

qL → q′L = e−iωaT a

qL and lL → l ′L = e−iωaT a

lL ,

while uR , dR , νR , and eR are SU(2)L singlets and do not couple to the
corresponding gauge bosons W a

µ.

Under U(1)Y , the matter fields transform as ψ → ψ′ = e−iωYψψ.
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The Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism

We introduce a scalar field which transforms as a doublet under SU(2)L, and
which has a potential of the form

V (Φ) = −µ2Φ∗Φ + λ|Φ∗Φ|2 .

In a specific gauge (unitary gauge), the field can be written as

Φ =
1√
2

(
0

v + H

)
so that

DµΦ =
1√
2

(
∂µ + i

g

2

(
W 3
µ

√
2W−µ√

2W+
µ −W 3

µ

)
+ i

g ′

2
Bµ

)(
0

v + H

)

and thus

|DµΦ|2 ⊃ 1

2
(∂µH)2 +

g 2v 2

4
W+µW−µ +

v 2

8

(
gW 3

µ − g ′Bµ
)2

where W±µ = (W 1
µ ±W 2

µ)/
√

2.
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Thus the gauge bosons W 3
µ and Bµ mix, and the physical mass eigenstates are

the linear combinations

Zµ ≡ cos θwW
3
µ − sin θwBµ

Aµ ≡ cos θwBµ + sin θwW
3
µ

with the weak mixing angle defined by

tan θw ≡
g ′

g
.

With these definitions we find

|DµΦ|2 ⊃ 1

2
(∂µH)2 +

g 2v 2

4
W+µW−µ +

g 2v 2

8 cos2 θw
ZµZ

µ + 0AµA
µ .

We can read off the masses of the gauge bosons,

MW =
1

2
gv , MZ =

1

2

gv

cos θw
and MA = 0 .

One can show that the quantum numbers of the SU(2)L, U(1)Y and U(1)em
gauge groups are connected through Q = Y + T 3.
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Fermion masses

In our free Dirac Lagrangian, we included a mass term for the fermions

L ⊃ mψψ = mψLψR + mψRψL .

However, this term violates the SU(2)L gauge symmetry.

Fortunately, the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism comes
to rescue. The term

L ⊃ −Ye l
i
LΦieR + h.c. = − Ye√

2
(νLeL)

(
0

v + H

)
eR + h.c.

is gauge invariant. Thus, we obtain a mass term and an interaction

− Ye√
2

(v + H) (eLeR + eReL) = − Ye√
2

(v + H) ee = −meee −
me

v
Hee ,

where
me ≡

Yev√
2

or Ye =

√
2me

v
= g

me√
2MW

The strength of the interaction between the Higgs particle and the fermions is
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The Higgs is produced through its interaction with heavy particles
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The Higgs likes to decay to heavy particles
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Classifying free parameters

The free parameters in the electroweak Standard Model for one generation are

I the two gauge couplings g , g ′ for the SU(2)L and U(1)Y gauge groups;

I the two parameters µ and λ in the potential V (Φ);

I the Yukawa couplings Yu,Yd ,Ye and Yν .

Adding the QCD sector and two more generations of quarks and leptons, the
Standard Model contains at least 26 free parameters:

I 3 gauge couplings

I 6 quark masses

I 6 lepton masses

I 3+3 mixing angles

I 1+1 CP-violating phases

I 1 W or Z mass

I 1 Higgs mass

I 1 CP-violating angle
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Physics beyond the Standard Model?

I The problem of mass:

What is the origin of particle masses? Is it the SM Higgs field?

What stabilizes the Higgs mass?

What sets the scale of fermion masses?

I The problem of unification:

Is there a simple framework for unifying all particle interactions?

I The problem of flavour:

Why are there so many types of quarks and leptons?

What is the origin of CP-violation?

I Cosmological problems:

What is the origin of the baryon-antibaryon asymmetry?

What is the nature of dark matter and dark energy?

19 / 21



Physics beyond the Standard Model?

I The problem of mass:

What is the origin of particle masses? Is it the SM Higgs field?

What stabilizes the Higgs mass?

What sets the scale of fermion masses?

I The problem of unification:

Is there a simple framework for unifying all particle interactions?

I The problem of flavour:

Why are there so many types of quarks and leptons?

What is the origin of CP-violation?

I Cosmological problems:

What is the origin of the baryon-antibaryon asymmetry?

What is the nature of dark matter and dark energy?

19 / 21



Physics beyond the Standard Model?

I The problem of mass:

What is the origin of particle masses? Is it the SM Higgs field?

What stabilizes the Higgs mass?

What sets the scale of fermion masses?

I The problem of unification:

Is there a simple framework for unifying all particle interactions?

I The problem of flavour:

Why are there so many types of quarks and leptons?

What is the origin of CP-violation?

I Cosmological problems:

What is the origin of the baryon-antibaryon asymmetry?

What is the nature of dark matter and dark energy?

19 / 21



Physics beyond the Standard Model?

I The problem of mass:

What is the origin of particle masses? Is it the SM Higgs field?

What stabilizes the Higgs mass?

What sets the scale of fermion masses?

I The problem of unification:

Is there a simple framework for unifying all particle interactions?

I The problem of flavour:

Why are there so many types of quarks and leptons?

What is the origin of CP-violation?

I Cosmological problems:

What is the origin of the baryon-antibaryon asymmetry?

What is the nature of dark matter and dark energy?

19 / 21



LHC phenomenology 2015: new discoveries?

“It is also a good rule not to put overmuch confidence in the
observational results that are put forward until they are
confirmed by theory.” (Sir Arthur Eddington)
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Thanks
& enjoy the summer at CERN

Questions, suggestions etc.? Please get in touch!

mkraemer@physik.rwth-aachen.de

http://web.physik.rwth-aachen.de/~mkraemer/
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