LHC machine status

LHCC 3rd June 2015

Mike Lamont for the LHC team

The LHC powering tests overview

Since September 15th 2014:

1566 superconducting circuits commissioned through execution and analysis of more than 10.000 test steps (~13.800 test steps including reexecution)

Powering tests were completed at 8 am on Friday April 03rd

					3 #MQ Firm 1	#MQ Firm 2	#MQ Firm 3	#MQ total	#CQ total
RB.A12	11080 A reached	50	95	9	2	1	4	7	7
RB.A23	11080 A reached	56	58	40	Ō	2	15	17	17
RB.A34	11080 A reached	44	81	29	1	7	8	16	16
RB.A45	11080 A reached	48	44	62	-	3	48	61	49
RB.A56	11080 A reached	28	42	84	0	0	18	18	17
RB.A67	11080 A reached	57	36	61	0	1	21	22	21
RB.A78	11080 A reached	53	40	61	2	10	7	19	19
RB.A81	11080 A reached	64	24	66	0	3	26	29	26

Dipole training 1/2

- 154 dipoles per sector, powered in series
- Ramp the current until single magnet quenches "training quench"
- Usually quench 3 4 other dipoles at the same time
- Cryogenics recovery time: 6 8 hours

Dipole training 2/2

Training: frictional energy released during conductor motion

Campaign summary

-	<u> </u>									
Training quenches during HWC 2014-2015 occurring until I_PNO+100 A has been reached for the first time										
Circuit	Status	#M Firm	1#M Firm 2#	M Firm	3#MQ Firm 1	#MQ Firm 2	#MQ Firm 3	#MQ total	#CQ total	
RB.A12	11080 A reached	50	95	9	2	1	4	7	7	
RB.A23	11080 A reached	56	58	40	0	1	15	16	16	
RB.A34	11080 A reached	44	81	29	1	5	8	14	14	
RB.A45	11080 A reached	48	44	62	0	3	48	51	49	
RB.A56	11080 A reached	28	42	84	0	0	15	15	14	
RB.A67	11080 A reached	57	36	61	0	1	20	21	20	
RB.A78	11080 A reached	53	40	61	2	8	6	16	16	
RB.A81	11080 A reached	64	24	66	0	3	26	29	26	
	Total:	400	420	412	5	22	142	169	162	

#M: Number of magnets in a sector.

#MQ: Number of magnet training quenches in a sector.

#CQ: Number of circuit quenches in a sector.

- All magnets have been trained to well over 7 TeV in SM18 before installation
- Extensive re-training in situ was not expected

LHC - 2015

- Target energy: 6.5 TeV
 - looking good
- Bunch spacing: 25 ns
 - strongly favored by experiments (pile-up limit around 50)
- Beta* in ATLAS and CMS: 80 to 40 cm

Energy

- Lower quench margins
- Lower tolerance to beam loss.
- Hardware closer to maximum (beam dumps, power converters etc.)

25 ns

- Electron-cloud
- UFOs
- More long range collisions
- Larger crossing angle, higher beta*
- Higher total beam current
- Higher intensity per injection

LHC bunch structure - 2015

- 25 ns bunch spacing
- ~2800 bunches
- Nominal bunch intensity 1.15 x 10¹¹ protons per bunch

26.7 km 2800 bunches

New limits of ~2 PS batches per injection from the injection protection absorbers – will reduce the maximum number of bunches to around 2500

2015: beta* in IPs 1 and 5

- Many things have changed. Start carefully and push performance later.
- Start-up: β*= 80 cm (very) relaxed
 - 2012 collimator settings
 - 11 sigma long range separation
 - Aperture, orbit stability... checks ongoing
- Ultimate in 2015: $\beta^* = 40$ cm
 - Possible reduction later in the year

$$\mathcal{L} \propto rac{1}{eta^*}$$

2015 commissioning strategy

- Low intensity commissioning of full cycle 8 weeks
- Pilot physics low number of bunches
- Special physics run: LHCf and luminosity calibration
- Scrubbing for 50 ns
- Intensity ramp-up with 50 ns
 - Characterize vacuum, heat load, electron cloud, losses, instabilities, UFOs, impedance
- Scrubbing for 25 ns
- Ramp-up 25 ns operation with relaxed beta*
- Possibly commission lower beta*
- 25 ns operation

2015 Q2

- 8 weeks beam commissioning
- Pilot physics up to at least 40 bunches per beam
- 5 days special physics at beta* = 19 m (VdM, LHCf, TOTEM & ALFA)
- Start technical stop 15th June

Q3/Q4 2015

								End physics [06:00]					
	Oct Nov							Dec					
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	28	5	1:	2 19	26	2	9	16	23	30	7	14	21
Tu			run					lons				<u>-e</u>	
We			sicr				TS3	setup				Technical stop	
Th			physic							IONS		Tecl	
Fr			Special			MD 3							Xmas
Sa			Sp										
Su													

2015 - latest schedule

Phase	Days		
Initial Commissioning	57		
Scrubbing	23		
Special physics run 1 (LHCf/VdM)	5		
Proton physics 50 ns	9 + 21		
Proton physics 25 ns	70		
Special physics run 2 (TOTEM/VdM)	7		
Machine development (MD)	15		
Technical stops	15		
Technical stop recovery	3		
Ion setup/Ion run	4 + 24		
Total	253 (36 weeks)		

Schedule - comments

- Picked up some 4 weeks delay from:
 - Powering tests/quench training overrun
 - Earth fault resolution
- Proton-proton physics down to 70 days
 - Decrease in beta* to be reviewed after gaining some experience (although considerable progress made during commissioning)
- Ion program unaffected
 - Proton-proton reference data will be difficult to squeeze in

Commissioning

System commissioning with beam

- Collimation
- Beam dump
- Feedbacks
- Beam instrumentation
- Machine protection
- RF
- Transverse damper
- Injection

Machine characterization

- Optics measurement and correction
- Magnetic machine

Operations

- High intensity injection
- Ramp to 6.5 TeV
- Squeeze

Complete Ongoing

Injection - probe

Ramp - probe

Flat-top - probe

Squeeze - probe

Injection - nominal

Ramp - nominal

Flat-top - nominal

Squeeze - nominal

Collide & validation

Milestones

Circulating beam	Sunday 5 th April
Ramp to 6.5 TeV	Friday 10 th April
First 13 TeV collisions	Wednesday 20 th May
First Stable beams	Wednesday 3 rd June

Working throughout with:

- probes (5e9 protons per bunch) or
- 1 or 2 nominals (1.2e11 protons per bunch)

THIS IS NOT BAD!

Threading – Easter Sunday

- Threading of B2 started at 10:12, ended 10:41.
 - Followed by 1 hour of work to establish a closed orbit and circulate more than 25 turns.
- □ Threading of B1 started at 11:54, ended 12:26.
 - Almost immediately obtained a closed orbit and more than 25 turns.

6.5 TeV for the first time

First images of collisions at 13 TeV

by Cian O'Luanaigh

21st May

First Stable Beams

This morning

- 07:00 Injection delayed
 - Issue with interlocked BPM
 - SPS beam dump kicker fault
- 08:25 Start ramp
- 08:38 Beams dump at 4.1 TeV
 - Software interlock related to interlock BPM fix!
- 09:46 Start ramp
- 10:15 Start squeeze
- 10:40 Stable beams

Of note 1/2

- A lot of lessons learnt from Run 1
- Excellent and improved system performance:
 - Beam Instrumentation
 - Transverse feedback
 - RF
 - Collimation
 - Injection and beam dump systems
 - Vacuum
 - Machine protection
- Improved software & analysis tools
- Experience!

Of note 2/2

- Magnetically reproducible as ever
- Optically good, corrected to excellent
- Aperture
 - measurements at top energy, 80cm, before and after collision indicate that the aperture is ok and compatible with the present collimation hierarchy. This is a very good result.
- Behaving well at 6.5 TeV
 - One additional training quench so far
- Operationally well under control
 - Injection, ramp, squeeze, de-squeeze

Still have to face the intensity ramp-up

• UFOs, e-cloud, vacuum, beam induced heating, instabilities

Optics - 40 cm

Flat top collimator gaps

Off momentum loss map 6.5 TeV

Novel features of collimation system – BPM equipped tertiary collimators, automatic beam based set-up

Aperture

MUFOs in 15R8

- Multiple loss events after a short time at 6.5 TeV compatible with particles falling into the beam
 - loss patterns point to a specific position in the middle of a dipole magnet
 - Quenched twice, numerous BLM triggered dumps...

Aperture restriction in 15R8

ULO (Unidentified Lying Object)

- Aperture restriction measured at injection and 6.5 TeV
- Presently running with orbit bumps
 - -3 mm in H, +1 in V, to optimize available aperture
 - aperture probably not limiting for operation
- Behaviour with higher intensities and bunch trains still unknown
- MUFOs went away but last week

UFO in 15R8 are back

Dump 1:5.1 TeV with 2 bunches

Dump 2: 4.3 TeV with I bunch

This following a 15R8 aperture scan. A worry.

2015: ATLAS and CMS performance

- Conservative beta* to start
- Nominal bunch population
- Reasonable emittance into collisions
- Assume same machine availability as 2012

	Nc	Beta *	ppb	EmitN	Lumi [cm ⁻² s ⁻¹]	Days (approx)	Int lumi	Pileup
50 ns	1300	80	1.2e11	2.5	4.8e33	21	~1 fb ⁻¹	25
2015.1	2448	80	1.2e11	3.1	7.1e33	35	~4 fb ⁻¹	21
2015.2	2448	40	1.2e11	3.1	1.2e34	30	~5 fb ⁻¹	35

Official GPD luminosity target for the year was 10 fb⁻¹ Now on the challenging side – let's say 5 to 10 fb⁻¹

Special physics runs

- First run 5 day run scheduled for next week
 - LHCf and luminosity calibration with VdM scans. TOTEM and ALFA to piggy-back.
 - De-squeeze to 19-19-19-24 m commissioned (and test collision delivered)
 - Roman Pot set-up and validation still to do
 - Pilot physics and ~10 pb⁻¹ to be delivered before but in good shape
- Second 7 day run for later in year
 - VdM and 90 m run for TOTEM and ALFA
 - Procedures and tools for set-up in good shape should allow effective exploitation of scheduled time

"Doublet" scrubbing beam: PyECLOUD simulation results

Buildup simulations show a substantial enhancement of the e-cloud with the "doublet" bunch pattern

Conclusions

- Looking good at 6.5 TeV
 - Great job done in LS1 and during powering tests
 - Impressive progress so far, lot of lessons learnt in Run 1 and fed-forward
- Fundamentals look sound, no show stoppers for the moment
 - Some irritants resolution cost time
- Next challenge higher intensity and e-cloud
- 2015 will be a short year for proton physics but lay foundations for production for the rest of Run 2