Model for a Azerbaijan Cloud Data Centre for Science

CERN April 24th 2015

Overview

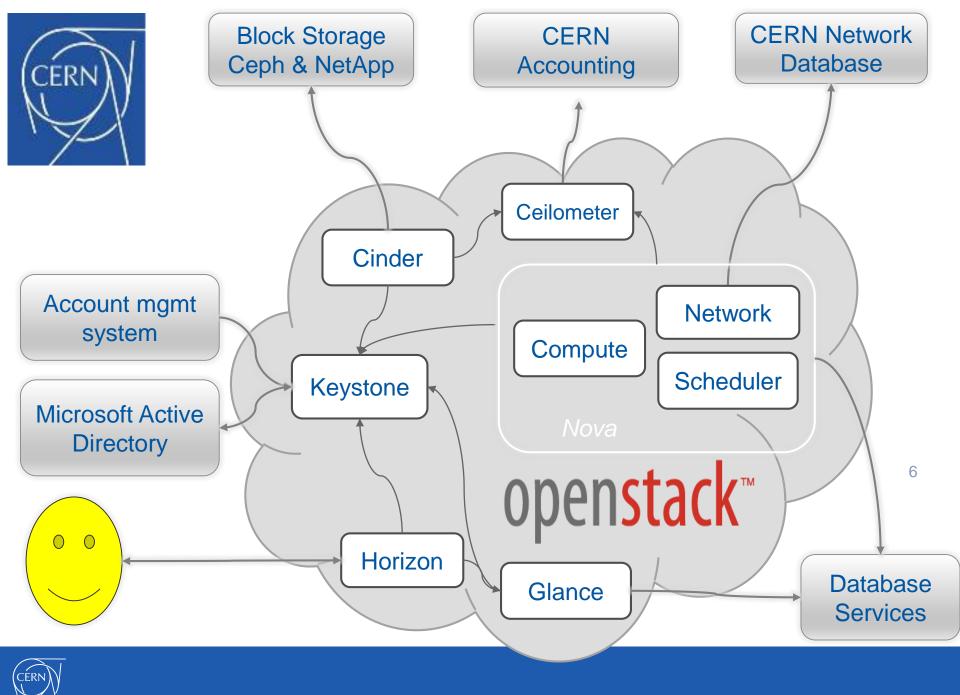
- Why Clouds for Scientific Computing
- CERN's Cloud infrastructure
- Model for the evolution of a Cloud based data centre for science
- Discussions

Why Clouds?

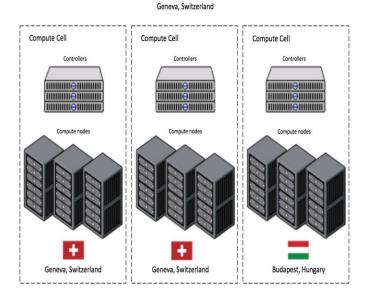
- Clouds offer flexibility
 - user workloads and system requirements are decoupled
 - dynamic allocation of resources
 - commercial and non-commercial providers
- Based on established, open technology and protocols
 - expertise is widely available
 - products and tools evolve rapidly
 - commercial and non-commercial users
- Proven scalability
 - small in-house systems to world wide distributed systems

CERN Cloud use-cases

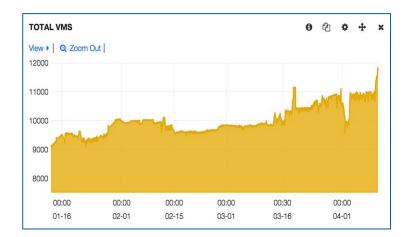
- Compute intensive physics computing
 - More than 90% of our resources
 - Linux VMs, managed LHC experiments
 - Many identical machines
 - "Cattle", low SLA
- Service nodes, personal VMs
 - Webservers, development boxes, etc.
 - Includes Windows VMs
 - I/O intensive
 - Huge variety of machines
 - "Pets", often requiring high uptime
- Both require high level of automation

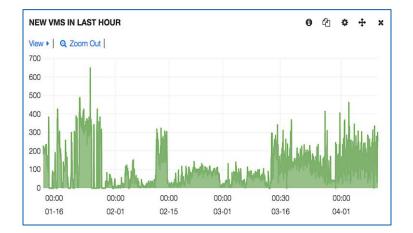

CERN Private Cloud - Numbers

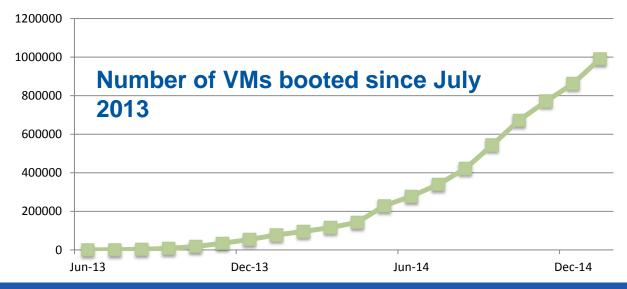
- Based on OpenStack Juno
- Spans between 2 datacentres
- 5000 hypervisors
 - 120000 cores
- 11000 VMs
- 1500 users
- 1800 projects



Scaling based on Nova Cells


- Groups of 200 1000 hosts configured as a tree
- Add cells to grow the deployment
- CERN: 5000 servers in 15
 cells




API Cell

CERN Cloud usage figures

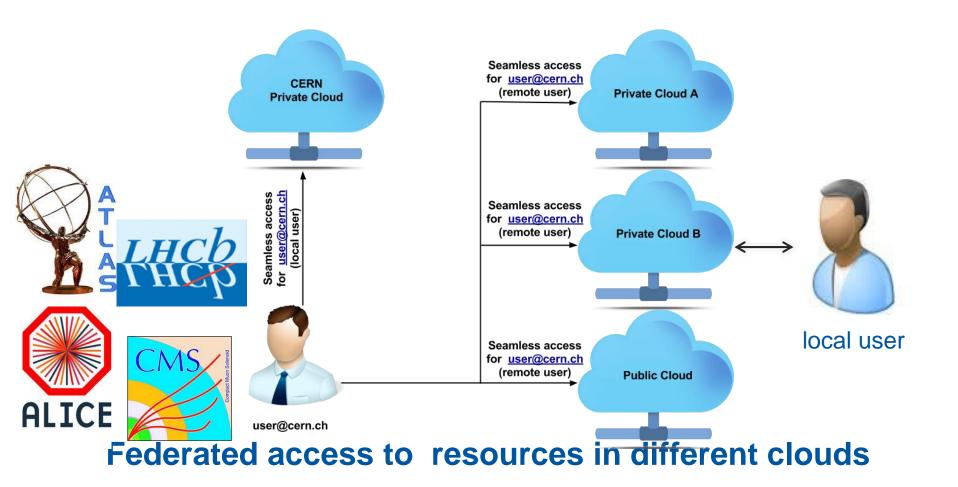
Storage for Science at CERN

- Cloud based storage for cloud services
 - OpenStack Cinder
 - Ceph reliable backend
- EOS for Physics research
 - XROOTD and HTTP
 - for high performance
 - Kerberos and X509
 - for Grid and local usage
 - scalable to >>100PByte
- CASTOR
 - tape archive system
 - >>100PByte
 - forever

WLCG Experience

- Avoid:
 - "Everything has to work before anything works"
- Computational resources are manageable
 - everything is transient
 - partial systems are already useful
 - scaling/replacing is straight forward
- Storage is difficult
 - partial system is useless
 - reliability&availability a must
 - adding/replacing is complex
 - \rightarrow Multiphase deployment model works best

Possible deployment scenario: L1


- Start with subset of OpenStack components
 - Nova, Keystone, Glance, Neutron, Horizon, Ceilometer
- Use modern fabric/config management tools
 - kickstart, puppet, nagios etc.
- Deploy using off-the-shelf components
 - Commercial distributions exist
 - incl. training and support
 - CERN uses the RDO community distribution
 - with Puppet modules
- Integrate this into your operations infrastructure
 - Server deployment, monitoring, maintenance

Configure OpenStack Federation

Azerbaijan Cloud Data Centre L1

- Can be deployed gradually
 - machines can be added as they get ready
- Can be used by LHC users like CERN
 - data and higher level services at CERN
 - including accounting/crediting
- Can provide computing resources to local users through cloud interfaces
- Can be evolved without disruption

Azerbaijan Cloud Data Centre L2

- Computing resources + local services
 - improved efficiency (latency hiding)
- Add OpenStack Cinder block storage
 - with CEPH as a backend
 - can be used by local (caching) services
 - deployed in VMs (scalable)
 - Squid, cvmFS.....
 - staging services

Allows local users to deploy services

💮 ceph

Azerbaijan Cloud Data Centre L3

- Computing and Storage Cloud
- Adding local storage
 - CEPH backend can be scaled
 - Can be offered to users via standard interfaces
 - SWIFT, Cinder, S3, RADOS ...
- Local users can use this directly
 - Cloud object store or file system
- WLCG users
 - via VM based Grid Storage elements (EOS)
- This can grow into a WLCG T2/T1 centre

What is needed ?

- Expertise for setting up the system
 - unix/linux sysadmins (2-3 for 2k nodes)
 - training of OpenStack (commercially available)
 - fabric knowledge
 - racks, electrical system, cooling, cabling...
- Estimated time line for L1(difficult prediction)
 - "core servers" : few weeks + training
 - Configuration of Federation: week
 - Hypervisors and nodes can be added gradually

Discussion

- contacts for technical discussions:
- ian.bird@cern.ch
- tim.bell@cern.ch
- jan.van.eldik@cern.ch
- markus.schulz@cern.ch

