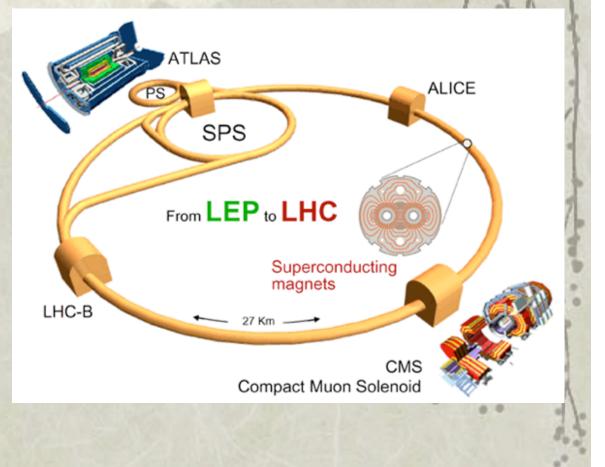
A Study of the ATLAS Tile Calorimeter LASER Calibration System Dynamic and Spin Studies at the LHC

> Meghan Shanks August 14, 2008 Drake University

University of Michigan CERN REU 2008 Mentors: Claudio Santoni, Renato Febbraro, Homer A. Neal

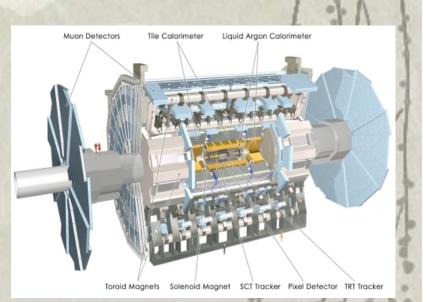

Overview

- Study of the ATLAS Tile Calorimeter LASER Calibration System Dynamic
 - The ATLAS experiment
 - Tile Cal
 - The LASER system
 - Intrinsic dynamic of the LASER system
 - Measurement of the wheel filters
 - Problems observed
 - Conclusions
- Spin Studies At the LHC:
 - Spin Background
 - Planned LHC studies
 - Higgs
 - Testing the standard model
 - Beyond the standard model
 - UMich Λ_{b} study at ATLAS
 - Conclusions

The ATLAS Experiment

* 3 major components:

- Inner tracker: precise momentum measurement
- Calorimeter: particle energy
- Muon spectrometer: muon momenta



TileCal

How it works:

- 1. Hadronic showers ionize the iron plates and illuminate the scintillating plastic tiles.
- 2. Light is collected and transmitted via optical fibers to the PMTs.
- 3. The charge collected by the photomultipliers is digitized and sent to ATLAS readout.
- 4. Information is reconstructed and summed in order to find the initial particle energy.

 Calibration: Reduce and understand the difference between the energy of the particle and the energy reconstructed.

The LASER System

Laser Box

Bottom

Shutter

Î

(vertically in the Rack)

PMT

PMT

Filters

800

Semi-reflecting

mirror

Liquid fibre towards the Optical Patch Panel

Filter Whee

- The LASER system serves a variety of functions:
 - 1. a fast, on-line control of the behavior of the PMTs and the associated frontend electronics of TileCal,
 - 2. a measurement of the time drift of the relative gains,
 - 3. a measurement of the linearity of each PMT, and
 - 4. a measurement of the number of photo-electrons received by each PMT.

The wheel filter: each filter applies a specific attenuation factor to the light

Top

500

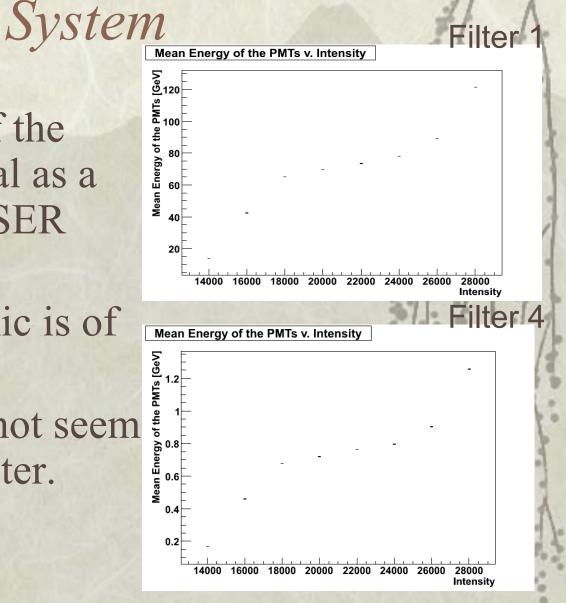
Photodiode Box

Laser Head

Fibre back from the

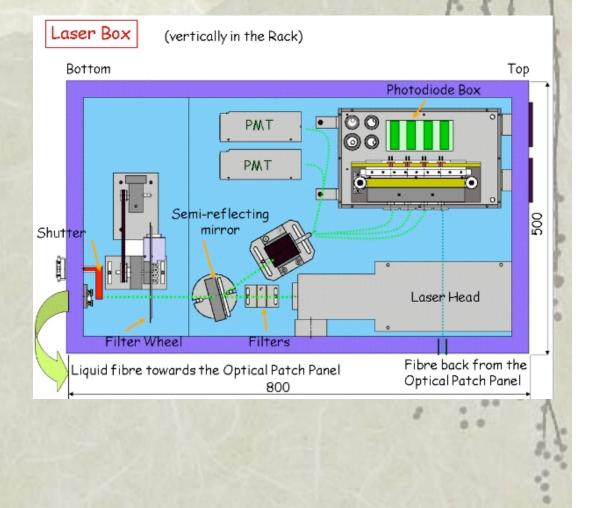
Optical Patch Panel

Goal:

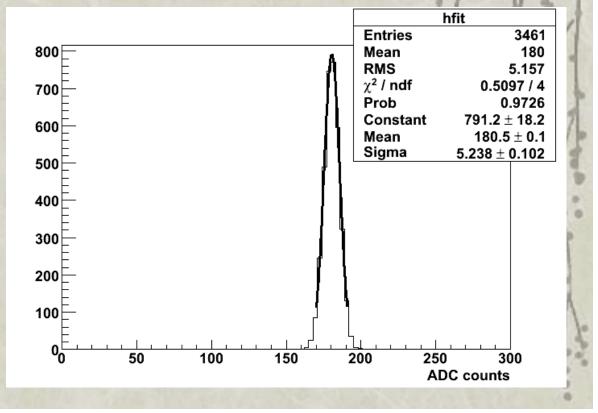

 Analyze data generated by the LASER system in order to measure the attenuation factor and therefore the dynamic of the LASER system

Data Samples

- Two modes: Standalone and TDaq
- Standalone: All Filters
- TDaq: Filters 1, 4, 8
- LASER intensities 14000, 16000, 18000, 20000, 22000, 24000, 26000, 28000, 30000 (arbitrary units)
- $* \sim 5000$ events


Intrinsic Dynamic of the LASER

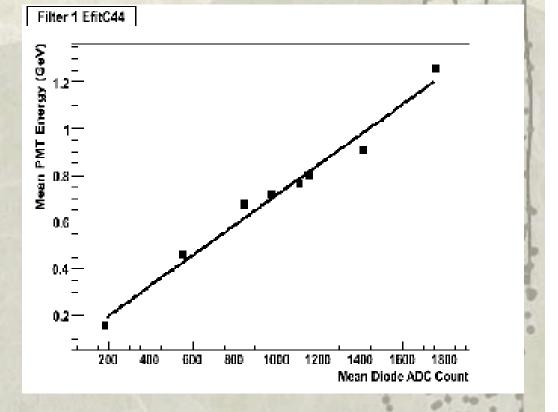
- Mean energy of the PMTs of TileCal as a function of LASER intensity.
- Intrinsic dynamic is of order 10.
- Dynamic does not seem to depend on filter.


Measurement of the Wheel Filters

Diode 4 sees
 the light that
 has gone
 through the
 filter

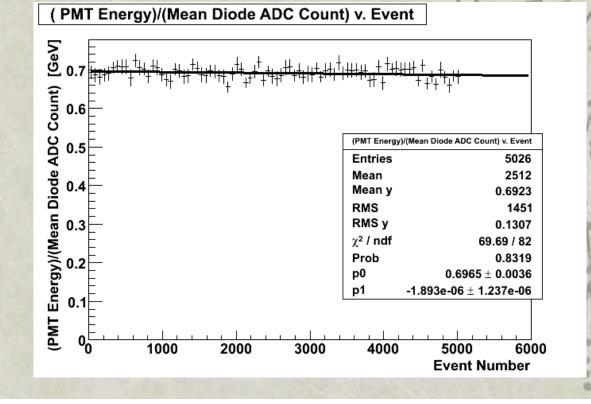
Measurement of the Wheel Filters

Pedestal value: comes from electronic noise


Calculation of the Attenuation Factor

* ADC_diode4/MeanADC_diodes1,2,3

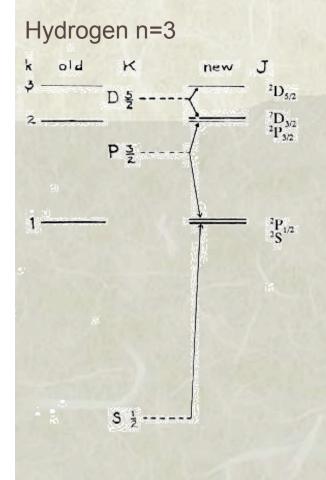
Name	Filter8/	Filter2/	Filter7/	Filter7/	Filter3/	Filter4/
Stor Realized	filter1	Filter8	Filter8	Filter2	Filter2	Filter3
Attenuation from Data	0.339 ± 0.002	0.261 ± 0.005	2.434 ± 0.058	9.325 ± 0.155	0.293 ± 0.007	0.317± 0.002
Attenuation from LASER Web Page	N/A	0.269 ± 0.003	N/A	N/A	0.304 ± 0.003	0.311± 0.024


Problems Observed

 Problem with diodes or PMT electronics?

Problems Observed

- Calibration constant = Energy_PMT/Mean diodeADCcount
- Significant slope


Conclusions: Study of the ATLAS Tile Calorimeter LASER Calibration System Dynamic

- * Large dynamical range covered by wheel filters
- Intrinsic dynamic is of order 10 and does not depend on filter
- Attenuation factors within experimental uncertainties
- PMT energy as a function of mean diode ADC count demonstrated non-linearity
- Non-linearity is currently under investigation by the LASER group

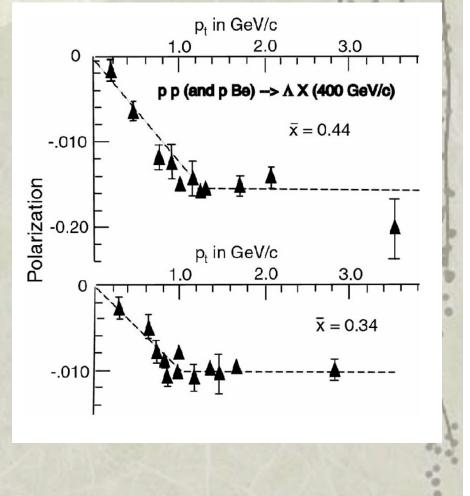
Spin Studies at the LHC

–Spin Background
–Planned LHC studies
•Higgs
•Testing the standard model
•Beyond the standard model
–UMich Λ_b study at ATLAS

History: Electron Spin

Question: How can we explain the multiplicity of the spectral terms of the atom?

Answer:


- Landé: Ersatzmodell: multiplets result from core angular momentum. The property of the core changes when electrons are added to the core
- Pauli: Multiplet is due to a characteristic of the electron. The quantum numbers n, k j, and m all belong to the electron.
- R. de L. Kronig, Uhlenbeck, Goudsmit: electron is self-rotating.
- L.H. Thomas: discrepancies between models and experiments due to an incorrect definition of the electron rest system -> Pauli withdraws reservations.
- "Self-rotation" not spin.

History: Proton Spin

- Question: Is the proton a fermion or boson?
- Answer:
 - Hund: Fermions and bosons should exhibit different intensity ratios in their band spectrum. He finds the already-known experimental value of rotational specific heat of hydrogen assuming the proton is a boson.
 - Hori finds intensity ratio consistent with proton being a fermion with spin 1/2.
 - Dennison: A long time is required for a Hydrogen molecule to undergo even j to odd j transition. Hund's result should not agree with Hori because Hund assumed thermal equilibrium. Proton is spin 1/2 fermion.

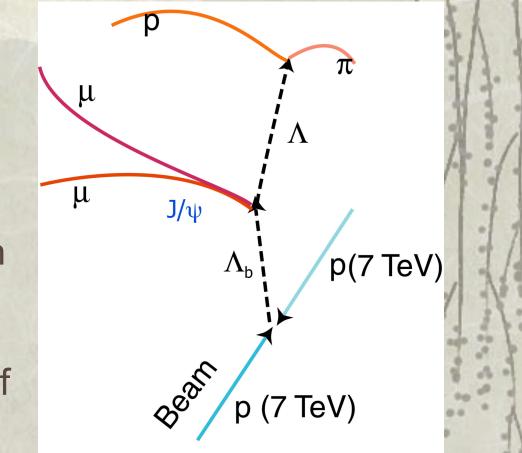
Why Spin Matters

- * Spin is still a mystery!
 - How does this intrinsic property work?
 - What is it in interactions that knows how the particle is spinning?
- An observable that can distinguish standard model particles from particles in physics beyond the standard model (SUSY, LED, Technicolor, etc.)

Higgs Studies

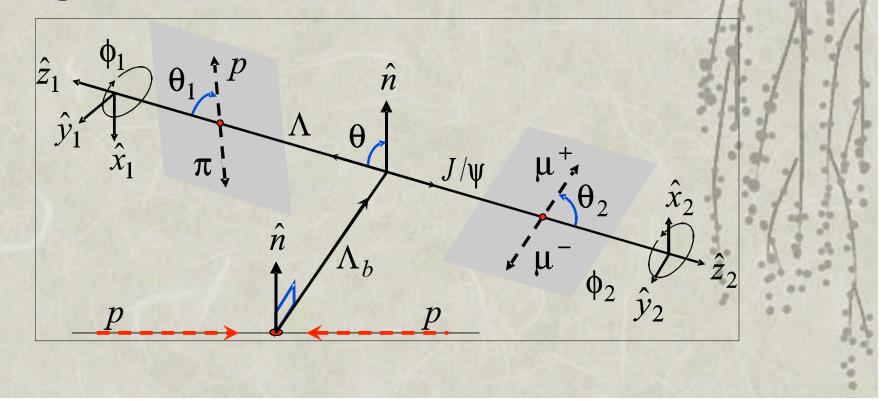
Detector Not specified	What $H^- \rightarrow \tau_R v_R$ with τ polarization = +1 τ -jet signal	Why Look for the charged Higgs boson H^{\pm} in the MSSM.	How Use τ polarization cut to enhance signal/background ratio in H^{\pm} search	1
ATLAS and CMS	$H \to ZZ \to 4l$	Determine the spin of the Higgs boson to discriminate between SM and non SM Higgs.		

Testing the Standard Model


Detector	What	Why	How
ATLAS	Measuring the spin density element of the Z boson.	Test the precise prediction in the SM for Z polarization and its dependence on mass energy in ZZ production.	Use $q\bar{q} \rightarrow ZZ \rightarrow 4l$ and reconstruct the decay angle of the decay leptons in the Z rest frame.
ATLAS	W Polarization in top decays	Test SM	Use W polarization to deduce sensitivity to tWb anomalous couplings.
CMS	Top quark pair production in semi-leptonic final state	To determine the top quark spin and search for possible deviations from SM coupling.	Measure the correlation between spins of the top and anti-top quarks produced at the LHC for semi-leptonic decay of top quark pair.
ALICE	$pp \rightarrow (\Lambda^{t} jet) jetX \text{ where } \Lambda$ is part of one of the observed jets.	Test the possible color flow dependence of single spin asymmetries and the (non)universality of transverse momentum dependent functions.	Study the new Λ polarization observable that arrises from the Sivers effect in the fragmentation process.

Physics Beyond the Standard Model

Detector	What	Why	How	
Not Specified	$\tilde{q} \to q \tilde{x_2^0} \to q l^{\pm} l^{\bar{\mp}}$ $\to q l^{\pm} l^{\bar{\mp}} \tilde{x_1^0}$			
ATLAS	$J/\Psi \to \mu^+ \mu^-$	$J/\Psi \rightarrow \mu^+\mu^-$ is a main source of background for Quarkonia -> di muons, the main channel of analysis to measure quarkonium production.	Measure J/Ψ polarization to reconstruct background.	
Not Specified	$d_R \bar{d}_R \to t_L \bar{t}_L$	Look for R-parity violating interactions that can happen in the MSSM.	R-parity violating interactions induce anomalous top pair productions and cause top quark polarization. Use the polarization as an observable for probing interactions.	
LHCb	$\Lambda_b \to \Lambda(X) \gamma$	Look for physics beyond the SM by probing whether there is a right-handed component to the photon	Observe the angular asymmetry between the Λ_b spin and photon momentum. Combine this with $\Lambda(1115)$ ->p π or $\Lambda(1115)$ ->pK decay polarization to test the structure of standard model.	
Not Specified	$pp \to \tilde{b}\tilde{b}^* \to b\bar{b}\rho_1$	Distinguish a universal extra dimensional interpretation with a fermionic heavy bottom quark from supersymmetry with a bosonic bottom.		
CMS	di-muon channel	Understand a new LED resonance state, which may be observed at CMS.	Use the spin-dependent measurement of the cosine of the polar angle of the muon center of mass system and the di-muon pair. They should differ between Z' or RSI graviton.	
ATLAS	SUSY spin measurements	Measure spins of new particles to demonstrate they are the predicted super partners.	Measure charge asymmetry from left squark cascade decay or measure the angular distributions from direct slepton productions.	


Studying the Λ_b

- UMich and ATLAS
- Λ_b will have much more polarization than Λ⁰
- A better understanding of spin

Measuring Spin

Select the decayAngular distributions

Conclusions: Spin Studies at the LHC

- The LHC has the potential to provide valuable insight into the mystery that is spin.
 - Why is there a plateau?
 - What is it in interactions that knows how a particle is spinning?
- * Might find some new physics along the way

Acknowledgements

- * Prof. Claudio Santoni and Mr. Renato Febbraro.
- University of Michigan Research Experience for Undergraduates program organizers: Prof. Homer A. Neal, Prof. Myron Campbell, Prof. Jean Krisch, Dr. Steven Goldfarb and Mr. Jeremy Herr.
- Dr. Sebastien Viret
- Dr. Eduard Burelo
- The National Science Foundation, the Ford Motor Company, and the CERN Summer Student Program

Sources

Alves, Alexandre and Eboli, Oscar. "Unraveling the Sbottom Spin at the CERN LHC." 2 April, 2007.

"A Short Introduction." <u>http://atlas-tile-laser-web.cern.ch/atlas-tile-laser/LASERDescription.html</u>. CERN, 2008.

"ATLAS." http://public.web.cern.ch/public/en/LHC/ATLAS-en.html. CERN, 2008.

- Baarmand, M, Mermerkay, A, and Vodoniyangv, L. "Measurement of Spin Correlation in top Quark Pair Production in Semi-Leptonic Final State." 9 June, 2008. CMS note 2006/111.
- Boer, D., Bomhof, C.j., Hwang, D.S. and Mulders, P.J. "Spin Asymmetries in Jet-Hyperon Production at LHC." 1 February, 2008.
- Brodet, Eyal. "Prospects of Measuring ZZ Polarization in the ATLAS Detector." 11 February, 2008. ATL-PHYS-PUB-2008-002.
- Di Girolamo, Benjamino. "An Overview of the ATLAS TILECAL Hadronic Calorimeter." ATLAS Internal Note. 12 September, 1996.

Etzion et. al. "Quarkonium Production and Polarization with Early Data at ATLAS." 24 June, 2008.

- Goto, Turo. "Neutralino Polarization Effect in Squark Cascade Decay at LHC." 28 November, 2004.
- Grenier, Philippe and Syas, Louis-Pierre. "Analysis of the 1997 Test Beam Laser Data of the TileCal Extended Barrel Modules 0." ATLAS Internal Note. ATL-TILECAL-98-159. 15 May, 1998.

Sources

Guchat, Monoranjan and Roy, D.P. "Using Tau Polarization for Charged Higgs Boson and SUSY Searches at LHC." 4 August, 2008.

Legger, Federica and Schietinger, Thomas. "Polarized Radiative X_b Decays at LHCb." December, 2006. LHCb public note LHCb/2006-013.

"Ongoing Work: LASER Instillation and Commissioning." <u>http://atlas-tile-laser.web.cern.ch/atlas-</u> tile-laser/LASERApplication_1.html. CERN, 2008.

"Ongoing Work: LASER Software Description (Standalone and ATLAS modes)." <u>http://atlas-tile-laser/LASERApplication_2html</u>. CERN, 2008.

Ozturk, Nurcan. "SUSY Parameter Determination with ATLAS." October 2006.

Rudwiedel, Christopher. "Prospects for the Determination of the Higgs Boson Properties at the LHC." 28 July, 2007.

"The ATLAS Experiment: Mapping the Secrets of the Universe." <u>http://atlas.ch/detector.html</u>. CERN, 2008.

"The Discovery of Electron Spin." <u>http://www.lorentz.leidenuniv.nl/history/spin/goudsmit.html</u>. Instituut-Lorentz for Theoretical Physics.

"The Large Hadron Collider." hppt://public.web.cern.ch/public/en/LHC/LHC-en.html. CERN, 2008.

Tomonaga, Sin-Itiro. The Story of Spin. University of Chicago Press. 1997.

