Netherlands eScience Center

... and the physics community

Daniela Remenska Research Engineer

Netherlands eScience Center = digitally enhanced Science

How we work - overarching

- eScience research Engineers
- calls for project proposals
 - ± 7 big projects (500K Euro)
 - ± 2 pathfinder projects (50K Euro)
- Fund projects with universities and research Institutes
 - capture & transfer knowledge/technology between disciplines
- Public Private collaborations (PPS)

eScience engineers & coordinators

- Research engineers and projects have a coordinator
- One or more research engineers per project, depending on:
 - Availability
 - Project requirements
 - Expertise

'All' of research

- Environment & Sustainability
 - · climate, ecology, water management, agriculture & food
- Life Sciences & eHealth
 - next generation sequencing, biobanking, molecules & man
- Humanities & Social Sciences
 - SMART cities, text analysis, eBusiness, creative technologies
- Physics & Beyond
 - · astronomy, high-energy physics, advanced materials

Core eScience Technologies

Optimized Data Handling

 database optimization, sensor networks structured & unstructured data

Big Data Analytics

• statistics, machine learning, text mining

Efficient Computing

distributed computing, efficient algorithms

Implementation in eStep

- eStep = eScience Technology Platform
- Coherent set of technologies to tackle the grand challenges in eScience
- Ensure easy access to data and e-Infrastructures

eStep

- Prevent duplication, fragmentation
- Sustainability
 - Enforce software engineering guidelines and best practices
 - Open source / open access, unless...
 - Community coding

Working with NLeSC

- NLeSC = project partner
- Engineer(s) typically spend 40%-60% of their time "on location"
- Research engineer normally co-author of project papers
- Project partners co-author of eScience papers
- Similarly for PR, disseminations, outreach, etc.

State-of-the-art e-science → impact in discipline → excellence in science

Communication

- NLeSC web site
- eStep
- Movies
- Yearly symposium
- Magazines
- Papers
- Trainings

• ...

iDark
The intelligent Dark Matter Survey

AA-ALERT
Access and Acceleration of the Apertif
Legacy Exploration of the Radio
Transient Sky

Collaborative Statistical Models
Large scale statistical data analysis in
particle physics

Automated Parallel Calculation of

Real-time detection of neutrinos from the distant Universe Observing processes that are inaccessible to optical telescopes

Giving Pandas a ROOT to Chew on Modern Big Data front and backends in the hunt for Dark Matter

Compressing the sky into a large collection of statistical models
Optimized data handling for observations in astronomy

Beyond the Data Explosion

An eScience infrastructure for huge interferometric datasets

PROMIMOOC
Process mining for multi-objective
online control

Giving Pandas ROOT to Chew On

X E N O N
Dark Matter Project

Modern Big Data front and backends in the hunt for Dark Matter

Giving Pandas ROOT to Chew On

X E N O N
Dark Matter Project

Modern Big Data front and backends in the hunt for Dark Matter

- ROOT binaries across platforms (avoid compiling ROOT on target machine)
- Layers not fully functional / lacking Python 3 support;
- Incompatibilities between ROOT 5/6 versions (also memory leaks)
- Synergize data formats
 (pandas,HDF5,MongoDB,Hadoop)

root_pandas:
ROOT I/O for Pandas

Pandas should read ROOT files

rootpy: Pythonic ROOT

Truly "Pythonic" ROOT interface

PyROOT:
A Python -- ROOT Bridge

Python bindings for ROOT

C++

conda install root=6 python=3

Real-time detection of neutrinos from the distant Universe

Trigger based purely on L0 hits

Challenging: amount of data+combinatorics... Can we compare each hit with all other hits?

Online reconstruction (= determining the neutrino direction)

Apply more sophisticated reconstruction algorithms to pre-selected set of hits Lowering the threshold/including L0s gives you more chance coincidences

This allows real-time alerts to other users
 Also outside of collaboration

... and more HEP NLeSC projects

Automated Parallel Calculation of Collaborative Statistical Models Large scale statistical data analysis in particle physics

- RooFit: statistical models of measurements performed by independent teams combined a posteriori without loss of detail
- scaling issues
- parallel algorithms / new data structures needed
- Combine the worldwide data within the most general models of Dark Matter
- algorithms to find (tiny, fragmented)
 solution areas in large multidimensional
 parameter spaces
- make a (web-accessible) largely automated "DM model" database

iDark
The intelligent Dark Matter Survey

Summary

- "Research software at the heart of scientific discovery"
- NLeSC parallels the HEP Software Foundation in a way
 - Similar objectives: share expertise, promote commonality & collaboration, raise awareness of existing software solutions, sustainability
 - but we have our own funding and FTEs
- NLeSC "physics and beyond" projects get in the spotlight in the coming year(s)
 - Efficient computing and optimized data handling are prevailing themes

See www.esciencecenter.nl for more

