

CERN Compute Accounting

miguel.coelho.santos@cern.ch

IT-CM

pre-GDB April 2016

CERN Cloud accounting

- cASO is a pluggable extractor of Cloud Accounting Usage Records for OpenStack.
 - https://wiki.egi.eu/wiki/Federated_Cloud_Accounting
 - https://github.com/IFCA/caso
- Scale tests with Ceilometer data showed scaling issue with Ceilometer
 - many (many!) keystone calls
 - very large infrastructure requirements
 - Gnocchi is being tested, will need to be reassessed later

CERN Cloud accounting

- Adopting cASO for producing Cloud reports of CERN Openstack
 - Data collected from Nova
 - Patch to support Keystone v3 (for upstream),
 - Hope to have a productive collaboration.

External Batch

- New project for using HTCondor as the Batch System on fixed resources in commercial Cloud(s).
- Can Batch cluster use commercial clouds in a similar manner to the Wigner Data Centre extension, i.e. with flat capacity?

Accounting on commercial clouds

Commercial cloud providers have similar usage reports that are used for billing

Amazon Web Services

Usage Report

Service	Operation	UsageType	StartTime	EndTime	UsageValue
AmazonEC2	RunInstances	EUC1-BoxUsage:t2.micro	04/01/16 00:00:00	04/02/16 00:00:00	12
AmazonEC2	RunInstances	EUC1-DataTransfer-In-Bytes	04/01/16 00:00:00	04/02/16 00:00:00	5115349
AmazonEC2	RunInstances	EUC1-DataTransfer-Out-Bytes	04/01/16 00:00:00	04/02/16 00:00:00	1029352
AmazonEC2	RunInstances	EUC1-C3DataTransfer-In-Bytes	04/01/16 00:00:00	04/02/16 00:00:00	85319
AmazonEC2	RunInstances	EUC1-C3DataTransfer-Out-Bytes	04/01/16 00:00:00	04/02/16 00:00:00	31470

Azure

Usage Report

Date	Meter Category	Meter Id	Meter Sub-category	Meter Name	Consume Quantity
5/4/2015	"Virtual Machines"	"fee1c571-5e0d-47ef-b031-3ba67f6a67c2"	"BASIC.A1 VM (Windows)"	"Compute Hours"	24
5/4/2015	"Virtual Machines"	"96cbeb60-b981-46b1-8ae6-101fd3367c34"	"Standard_D1 VM (Windows)"	"Compute Hours"	4.083355
5/5/2015	"Virtual Machines"	"fee1c571-5e0d-47ef-b031-3ba67f6a67c2"	"BASIC.A1 VM (Windows)"	"Compute Hours"	24

Billing

Billing Period	Subscription Name	Order Id	Description	Quantity	Currency	Value
201506(5/3/2015 - 6/2/2015)	"Virtual Machines"	"BASIC.A1 VM (Windows)"	"Compute Hours"	112	USD	\$5.71 USD
201506(5/3/2015 - 6/2/2015)	"Networking"	"Public IP Addresses"	"IP Address Hours"	4.1	USD	\$0.02 USD
201506(5/3/2015 - 6/2/2015)	"Virtual Machines"	"Standard_D1 VM (Windows)"	"Compute Hours"	4.083355	USD	\$0.35 USD

Google Cloud Platform

Report Date	Measurementid	Quantity	Unit	Resource URI	Resource ID	Location
02/13/2014	com.google.cloud/services/compute- engine/VmimageN1Standard_1	86400	seconds	https://www.googleapis.com/compute/v1/projects/myproject/zones/us- centrall-a/instances/my-instance	16557630484	us- central1- a

Summary

- AWS, Google, Azure, Rackspace produce usage reports, typically for one or two meters per service, for example:
 - time and bandwidth,
 - time and capacity,
 - storage and #operations,
 - just time,
 - just #operations

Summary

- These usage reports typically have:
 - one line per meter (not per VM, no complex records),
 - a daily frequency,
 - a simple format (CSV, JSON, both),
 - stored in a bucket.
- A monthly billing is produced:
 - aggregated data (per "service", per meter),
 - to each of these, a rating is applied to calculate cost.

Final remarks: Resource Monitoring

- Our recent test with commercial clouds have shown some interesting points (see Domenico)
- It's also important to monitor your resources and compare with the usage metering reports and billing (note, the problem also exists for owned data centres).
- Idling or failed nodes have a cost (good automated node orchestration is key).

Final remarks: Resource Performance

- Typically Commercial Cloud resources have somewhat varying performance:
 - from resource to resource,
 - over time.
- Important to monitor resource performance, which is important for efficiency and OPEX.
- Hard to do accounting based on (fluctuating) performance measurements.
 It's like a (fluctuating) efficiency rating applied to time (wall-clock). Being that efficiency and throughput are complex measurements.
- Typical solution seems to be real-time monitoring of application performance coupled sometimes with usage of reserved instances.

www.cern.ch