
Experimenting with ROOT task-oriented

parallelization and Tools

E. Tejedor, D. Piparo, P. Canal, P. Mató

Concurrency Forum

May 20th 2015

1. ROOT Parallelization

1. Overview

2. TTree iteration & I/O Pipeline

3. Parallel histogram filling

2. Tools

1. VTune

2. IgProf

3. Extrae + Paraver

2

3

• Seek for opportunities to do things in parallel in ROOT

• Prototype solutions for 4 use cases:

– I/O Pipeline

– Ntuple / Histogram filling

– Ntuple processing (TTreeDraw)

– Minimization / fitting

• Design the programming model offered to the user

Subrange 1 I/O Unzip Deserialize

I/O Pipeline

4

Two problems to solve:

1. How to iterate over a tree

(parallel I/O pipeline)

2. How to fill histograms in parallel

2

TFile *f = new TFile("tree.root");

TTree *t1 = (TTree*)f->Get("t1");

TH1F *hpx = new TH1F("hpx","px distribution",100,-3,3);

TH2F *hpxpy = new TH2F("hpxpy","py vs px",30,-3,3,30,-3,3);

Float_t px, py;

t1->SetBranchAddress("px",&px);

t1->SetBranchAddress("py",&py);

for (Long64_t i = 0; i < t1->GetEntries(); i++) {

 t1->GetEntry(i);

 hpx->Fill(px);

 hpxpy->Fill(px,py);

}

1

5

• Make parallelization transparent to the user in some cases

– e.g. TTreeDraw, minimization

• Otherwise, offer a user-friendly programming model

– Hide parallelization complexity

– Provide simple means for concurrency

• TTree iteration

– I/O pipeline parallelization happens behind the scenes

• Histogram filling

– Provide a MultiObject mechanism to fill in parallel and merge the

partial results

6

• Use case: iteration of a TTree

• First parallelization approach based on parallel branch

processing

– Goal: reduce GetEntry latency

– Create one asynchronous task per TBranch::GetEntry

• Protect access to shared objects (tree, cache)

Tree

Branch 1 Branch N

Sub

branch 1

…

Sub

branch k
…

GetEntry(i) GetEntry(i)

Task Task

7

8

• Preliminary performance results for first PBP prototype

• TTree iteration

– Complex branches

– Homogeneous

• Next step: real use case

– Different types of branches

9

• The programmer could provide a lambda that processes a

single event

– Parallel Branch Processing would be hidden

tree.process([&](Float_t px, Float_t py) {

 hpx->Fill(px);

 hpxpy->Fill(px,py);

 }

);

Or anything that passes the

event to the lambda

10

• Concatenate PBP tasks with with user lambda tasks

– Keep results for multiple entries in memory

– Heterogeneous sub-branches, scheduling, clustering

PBP Task

PBP Task
PBP Task

TTree::GetEntry(k)

User lambda

Task

PBP Task

PBP Task
PBP Task

TTree::GetEntry(k+1)

User lambda

Task

synch

11

• PBP + User lambda could be implemented as a TBB

pipeline with two stages

– PBP stage is serial but creates parallel tasks internally

– User lambda stage is parallel (limited by N)

PBP Task

PBP Task
PBP Task

User lambda

Task User lambda

Task User lambda

Task

TBB pipeline

1 instance N instances

N events

12

• Create a container class for thread-local histograms

• Each thread fills its own partial histogram

• Partial histograms are merged at the end

 MultiObject<TH1F> hpx(TH1F(…));

 MultiObject<TH2F> hpxpy(TH2F(…));

 t1.process([&](Float_t px, Float_t py) {

 hpx->Fill(px);

 hpxpy->Fill(px,py);

 }

);

 TH1F& hpxsum = hpx.sum();

 TH2F& hpxpysum = hpxpy.sum();

Fill partial histogram

Reduction

Multi-histogram objects

13

• Intel VTune Amplifier

– Profiler

– Concurrency analysis, thread display

14

• Profiling tool

– Double check for VTune

– Less profiling overhead

15

• Extrae

– Instrumentation tool

– Can be used to emit user events

– Generates trace files

• Paraver

– Graphical performance analysis

– Displays trace files

Extrae

User program {

 …

 Extrae_event(type, value);

 …

}

Trace files

Paraver

16

17

18

• VTune

 Thread graphical display

 Analysis of waits, TBB overhead

 Lock analysis not accurate

 Significant overhead

• IgProf

 Low overhead

 Underestimation of lock cost

• Extrae + Paraver

 Graphical analysis of the application’s behavior

 Event-level detail

 Limit of events?

19

• Implement the union of PBP + User lambda

– Combine ROOT and user tasks for a better thread utilization

• Apply parallelization to a real use case

– CMS analysis application

– Verify results

• If possible, apply similar strategies to the rest of

parallelization use cases

– Validate approach before including it into a ROOT release

