

PERSONAL SUMMARY

- Double Major in Physics and Computer Science & Engineering at University of California, Davis
- Most experience is in computational physics
- Past work centered mostly around research in astronomy, particle physics, and machine learning applications

CURRENT PROJECT

- CERN's 6D Tracking Code is used to compute and simulate trajectories of relativistic particles
- However, certain maps are not yet implemented
- Aim to implement such maps in SixTrack's physics manual, in SixTrack's native language—Fortran
- Check maps for numerical stability and correctness as well

CURRENT PROGRESS

- Modified SVN SixTrack
 distribution makefile to make it
 work for Mac users
- Began implementation of first map of physical phenomena, Thin RF Multipole, from SixTrack Physics Manual

MULTIPOLE EXAMPLES

CURRENT PLAN

- Implement relevant equations describing the small kick particle experiences in the vicinity of the thin RF multipole
- While temporary equations are currently used in SixTrack, new equations will account for various physical elements omitted, such as phases of normal and skew coefficients

NEXT STEPS

- Once implementation of Thin RF Multipole in C is complete, move onto Fortran implementation
- Check map for numerical stability and correctness by devising corner case scenarios to run the map under, and evaluate performance
- Follow the above game plan when tackling the other unimplemented maps

NEXT STEPS (CONT'D)

- Other maps to be implemented:
 - → Drift Map
 - → Thin Dipole Map
 - → Thick Dipole Map
 - Thin Combined Function Magnet Map

Would like such maps operational in new C library as well as the old legacy code (Fortran).

