

Add GPU support to the Vc vectorization library

Jan Stephan

Background and experience

● Computer Science at TU Dresden
● 6th semester
● student assistant since May 2012
● 3D reconstruction system for X-ray imaging
● implementation in C++ and OpenCL
● practical courses in the field of operating systems
● ISTQB® Certified Tester, Foundation Level

The Vc vectorization library

● free software library

● eases explicit vectorization of C++ code

● What does this mean?

The idea of SIMD

● Single Instruction, Multiple Data
● operate on a “vector” of data with a single

instruction
● example: x86 SSE registers
● 128bit-registers that can hold four (32bit) floats
● a single instruction to modify all of them
● Vc abstracts away the platform specific parts

Code examples - sqrt

Naive implementation:

float a[vectorSize], b[vectorSize];

// initialize here

for(size_t i = 0; i < vectorSize; ++i)
b[i] = std::sqrt(a[i]);

x86 SSE implementation:

float a[vectorSize], b[vectorSize];
__m128 rA, rB;

// initialize here

// declare pointers
float *pA = a;
float *pB = b;

for(size_t i = 0; i < vectorSize; i += 4)
{

rA = _mm_load_ps(pA);
rB = _mm_sqrt_ps(rA);
_mm_store_ps(pB, rB);
// adjust pointers
pA += 4;
pB += 4;

}

Code examples - sqrt

Vc implementation:

Vc::Memory<Vc::float_v, vectorSize> a;

Vc::Memory<Vc::float_v, vectorSize> b;

// initialize here

for(size_t i = 0; i < a.vectorsCount(); ++i)

b.vector(i) = Vc::sqrt(a.vector(i));

Goals and challenges

● project goal: port the library to NVIDIA's CUDA
platform

● challenges:
– be performant (copying to GPU will introduce

additional overhead)

– understand all the template magic in the sources

Questions?

Sources

M. Kretz, Extending C++ for Explicit Data-Parallel
Programming via SIMD Vector Types, Frankfurt
2015

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9

