
  

Idiomatic Python from idiomatic C++: removing 
barriers to rapid scientific development

Toby St Clere Smithe



  

About Me

● Masters student in Complex Systems
– Chalmers University, Gothenburg

– École Polytechnique, Paris

● Author of PyViennaCL
– Python bindings to ViennaCL

– ViennaCL: template C++ library for GPGPU linear 
algebra



  

Project Overview

● New infrastructure in ROOT 6
– cling C++ interpreter

– based on LLVM → knows about modern C++

● “Point and go” C++ bindings
– just tell PyROOT / cppyy where the source or precompiled 

module is, then use it like any Python extension!

● But: some things require manual tuning
– no one-one mapping from C++ to Python

● Longer term: loosen direct dependency on ROOT



  

Rationale

● Personal background: PyViennaCL
– thousands of lines of Boost::Python code just 

instantiating templates and exposing functions

– huge maintenance gain if this could be done 
automatically!

● Especially if this can work for both PyPy and 
CPython



  

Improvements of current features

● Automatic instantiations (not just an STL 
subset)

● Exception mapping
● More Python idioms

– iteration for any class providing iterators?

● Same features for both CPython and PyPy
– implementations in RPython and C++



  

New Features

● API for manual control
– Global Interpreter Lock

– Memory management (smart pointers etc)

● API simplification
– take advantage of the automatic instantiations

– no more cppyy.makeClass; just access the class!



  

Current Status

● Getting to know test infrastructure
● Designing test cases for fine-tuning API
● Thinking about API design

– due to try out some examples next week



  

Other investigations

● Python-to-C++ not just vice versa?
– things like Python functions as callbacks?

● Improvements to the buffer interface
– NumPy support and C++ arrays, for instance



  

Any questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

