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About Me

I am a PhD student in Mathematics at George Washington
University in Washington DC (USA, if you didn’t know already).
My thesis topic is in Topological Graph Theory, specifically
bijective methods in cellular map enumeration – which is
completely different from what I will be doing with CERN through
GSoC 2015.

I like all areas of math however, including numerical analysis.
Ultimately I would like to go into modern Quantum Physics, or
low-dimensional topology (such as 4-manifold theory).

Or into
Finance and pay back my student loans from undergrad.

I am very grateful for the opportunity to work with CERN this
Summer on this project.
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Detector Geometry and Particle Trajectory

Figure : An example due to John Apostolakis
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Summary of Physics for Particles in a Magnetic Field

We have from Electrodynamics the equations

dx

dt
=

p

m
and

dp

dt
= q (v × Bx)

where

x is position

v is velocity

m is mass of the particle

p = mv is momentum

Bx is the magnetic field at x .

q is charge of the particle
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RK method of s stages (with coefficients aij , bi , and ci)

We want to numerically solve the system y ′(t) = F (t, y):

Input yn ≈ y(tn)
RK (one step)−−−−−−−−→ Output yn+1 ≈ y(tn + h).

Procedure: First caculate

K1 = F (tn, yn),

K2 = F (tn + c2h, yn + h(a21K1)),

K3 = F (tn + c3h, yn + h(a31K1 + a32K2))

...

Ks = F (tn + csh, yn + h(as1K1 + as2K2 + · · ·+ as,s−1Ks−1)).

and then (finally):

yn+1 = yn + h
s∑

i=1

biKi ,
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The Attraction of Runge-Kutta-Nystrom solvers

This is all good, but we can do better. Our system

dx

dt
=

p

m
,
dp

dt
= q(v × Bx)⇐⇒

(
x
p

)′
=

(
p/m

q
m (p × Bx)

)
Is almost in the form (

u1
u2

)′
=

(
u2

F (u1, u2)

)
which is a first order formulation of the 2nd order ODE

y ′′(t) = F (t, y , y ′)

For reasons of computational efficiency we want to exploit this.
Runge-Kutta-Nystrom methods are designed specifically for this
type of problem.
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An RKN method example: 3 stage Charwa/Sharma

For the second order problem

y ′′ = f (t, y , y ′), y(t0) = y0, y ′(t0) = y ′0

Starting with an approximate (yk , y
′
k) we first calculate the

following quantities

K1 =f (tk + 0h, yk + 0hy ′k , y
′
k)

K2 =f (tk + 2/3h, yk + 2/3hy ′k + h2(−1/9)K1, y
′
k + 2/3h)

K3 =f (tk + 2/3h, yk + 2/3hy ′k + h2(2/9K1 + 0K2),

y ′k + h(1/3K1 + 1/3K2))

and finally construct the next approximating point

yk+1 = yk + hy ′k + h2(1/4K1 + 0K2 + 1/4K3)

y ′k+1 = y ′k + h(1/4K1 + 0K2 + 3/4K3)
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The Challenge

Not only do we want to be able to implement Nystrom methods,
we also want these extra features:

Trajectories paramterized with respect to arc length s (this
gives us more control over how far the particle travels in a
single step)

x(t(s)) and

∥∥∥∥dxds
∥∥∥∥ = 1

Dense interpolation to detect when a particle trajectory passes
through a volume. For each step, a polynomial

Pn(t) s.t. Pn(tn + σh) ≈ y(tn + σh) for σ ∈ [0, 1]

Trigonometrically fitted RKN methods for when the trajectory
of the particle is known to be an approximate to a helical path.
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Thank you!
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