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AgendaAgenda
➢ Overview/feature list
➢ KVM design vs other virtualization designs
➢ Shadow pagetables in vmx/svm
➢ Integration with Linux kernel VM
➢ QCOW2 image format
➢ Paravirtualization
➢ Pci-passthrough
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KVM OverviewKVM Overview
➢ KVM is a Linux kernel module that turns Linux into 

a hypervisor
➢ Requires hardware virtualization extensions

egrep 'vmx|svm' /proc/cpuinfo
➢ Supports multiple architectures: x86 (32- and 64- 

bit) s390 (mainframes), PowerPC, ia64 (Itanium)
➢ Competitive performance and feature set
➢ Advanced memory management (full swapping)
➢ Supports nested full virtualization on SVM (AMD)
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KVM FeaturesKVM Features
➢ NPT/EPT support  (server boost)
➢ KSM (share memory with COW)
➢ Disk image cloning, sharing, snapshot
➢ Ballooning
➢ Live migration (nfs as shared storage)
➢ Save and restore VM
➢ Virtio paravirtualization
➢ PCI-passthrough VT-D/IOMMU support
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KVM PhilosophyKVM Philosophy
➢ Reuse Linux code as much as possible
➢ Focus on virtualization only, leave other things to 
respective developers
➢ VM
➢ cpu scheduler
➢ Drivers
➢ Numa
➢ Powermanagement

➢ Integrate well into existing infrastructure
➢ just a kernel module
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Some closed source proprietary Some closed source proprietary 
VM designVM design
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xen designxen design
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KVM design... way to go!!KVM design... way to go!!
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KVM task modelKVM task model

kernel

task task guest task task guest
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KVM gust modeKVM gust mode
➢ Three modes for thread execution instead of the 
traditional two:
➢ User mode

➢ Kernel mode

➢ Guest mode (new!)

➢ A virtual CPU is implemented using a Linux thread 
(each thread has its own guest mode)

➢ The Linux scheduler is responsible for scheduling 
a virtual cpu, as it is a normal thread
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KVM userland <-> KVM kernelKVM userland <-> KVM kernel
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KVM emulationKVM emulation
➢ Most code executes natively but there is 
instruction emulation (interpreted) in these cases:
➢ wrprotect shadow pagetable faults (will mostly go 
away with out-of-sync)

➢ MMIO on emulated devices
➢ Big real mode on vmx (vmx has no real mode 
support, and vm86 misses the big real mode)

➢ Emulator is in the kernel to avoid round trip to 
userland and to support well SMP

➢ Because of big real mode emulator tries to 
emulate most instructions
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KVM process memory layoutKVM process memory layout

Linux Kernel
Address
Space

(includes
kvm*.ko)
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KVM page fault and sptesKVM page fault and sptes
➢ As the CPU enters guest mode, the KVM page 

fault will be invoked and it'll establish the shadow 
pagetables

➢ Shadow pagetables simulates a secondary TLB 
refilled by software

➢ The primary TLB maps “host virtual” to “host 
physical”

➢ Shadow pagetables map “guest virtual” to “host 
physical”

➢ To establish sptes KVM must do “guest virtual” -> 
“guest physical” -> “host virtual” -> “host physical”
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VM layout with sptesVM layout with sptes
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Guest virtual changesGuest virtual changes
➢ When guest virtual changes the shadow pagetable 
must change

➢ KVM caches shadow pagetables if guest pte 
wasn't modified:
➢ Not like the hardware TLB that would throw away 
all information when guest issues a TLB flush

➢ Frequent pte changes in the guest requires many 
VM-exits and shadow pagetable mangling

➢ EPT/NPT shadow paging extension avoids all the 
guest pte mangling virtualization overhead by 
allowing shadow pagetables to map “guest 
physical” to “host physical”
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VM layout with EPT/NPT sptesVM layout with EPT/NPT sptes

Guest physical (malloc)

Host RAM

Guest virtual address space
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EPT/NTP and computingEPT/NTP and computing
➢ There are two hardware TLB:

➢ primary for host: refilled by host ptes
➢ secondary for guest: refilled by shadow ptes

➢ When a guest TLB miss occurs:
➢ regular shadow pagetables maps the “guest 
virtual” to “host physical” and secondary TLB is 
filled by hardware in 4 memory accesses

➢ With EPT/NTP the shadow pagetable maps “host 
virtual” to “host physical” so harware will have to 
walk “guest virtual” to “guest physical” first. Each 
guest pte read requires 5 reads and total will be 
20 memory accesses for each TLB miss
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EPT/NTP runtime switch?EPT/NTP runtime switch?
➢ Regular shadow paging might be faster for 
number crunching with a thread per-cpu and not 
much guest VM activity

➢ EPT/NPT will surely be much faster for databases 
or similar apps as it eliminates lots of VM exits
➢ NOTE: I/O activity is not relevant with regard to 
shadow paging

➢ Benchmarks are needed
➢ It's also possible for KVM to autodetect the 
workload and switch from regular shadow paging 
to NPT/EPT at runtime automatically
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Linux Kernel integrationLinux Kernel integration
➢ Preempt notifiers:

➢ CPU doesn't fully exit guest mode if scheduler 
invocation doesn't switch the task in the CPU

➢ MMU notifier:
➢ Makes the guest physical ram totally swappable
➢ Provides transparent aging and unmapping 

methods to remove secondary MMU references
➢ Generic infrastructure: fits all kind of secondary 

MMUs, not just the KVM usage
➢ Multiple secondary MMUs can work on the 

same “mm” simultaneously without interference
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MMU notifierMMU notifier
➢ Linux doesn't know anything about the KVM MMU
➢ But the core Linux VM needs to:

➢ Flush shadow page table entries when it swaps 
out a page (or migrates it, or inflates the 
balloon...)

➢ Query the pte accessed bit to determine the age 
of a page to decide if it's part of the working set

➢ Every time Linux changes the primary MMU it 
notifies the secondary MMU drivers

➢ KVM ensures all relevant shadow pagetables are 
zapped before the MMU notifier method returns

Copyright © 2007-2008 Qumranet, Inc.



  

QCOW2 formatQCOW2 format
➢ Divides the logical volume size in clusters
➢ Appends newly written blocks to the qcow2 image 

➢ Raw images also allocate blocks only after writes 
(holes), but the file size fixed

➢ cp/scp/rsync by default won't recreate holes in 
destination, so small file is more user friendly

➢ Allows cloning an image with indefinite levels 
(qcow2 code is recursive)
➢ All parent images must be readonly, child is COW
➢ Snapshots are qcow2 images created on 
temporary files (changes be flushed to parent)
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KVM ParavirtualizationKVM Paravirtualization
➢ Emulated devices are the default with KVM/QEMU 
but they're slower

➢ MMIO accesses are emulated and they require an 
exit all the way down to userland if the driver is 
running in the I/O thread kvm-userland context

➢ This can result in dozen of exists for each packet 
delivered

➢ Paravirtualization is provided by the linux guest 
common code with a generic driver infrastructure

➢ KVM provides the paravirt support so the guest 
will enable paravirtualization during boot
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KVM with Linux virtioKVM with Linux virtio
➢ Timer

➢ More robust to get the time from the host with the 
equivalent of gettimeofday than to emulate 
PIT/HPET/RTC

➢ I/O
➢ Avoids IDE/SCSI emulation (still has to go to 
userland for qcow2 etc..)

➢ Networking
➢ A single VM-exit can deliver the packet to the 
virtio network device, can support GSO to deliver 
multiple packets in one exit, can run zerocopy
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PCI passthroughPCI passthrough
➢ New hardware provides VT-d/IOMMU to prevent 
PCI devices to DMA anywhere they want in RAM

➢ VT-d/IOMMU allow to securely associate a PCI 
device to a VM without risking to destabilize host 
kernel or other guests

➢ Without VT-d/IOMMU for pci-passthrough to work 
(insecurely):
➢ the spte mappings must become an identity
➢ pvdma must be supported by the guest

➢ VT-d/IOMMU also requires pvdma support to allow 
swapping (if guest is malicious the VM will be 
killed when VT-d throws an async exception)
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KVM ideal for cloud computingKVM ideal for cloud computing
➢ VDE virtual distributed ethernet can be bridged or 
routed to the real ethernet

➢ Using tap-fd it's possible to create a p2p encrypted 
mac-enforced (or routed) secure virtual ethernet

➢ Qcow2 base image distributed to all clients
➢ Applications unpacked at boot on top of qcow2 
base image, or distributed as child images

➢ Transparent environment
➢ Would like to run KVM on end user workstations 
with CPUShare to create lots of VM on demand 
and an omogeneous environemnt
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Q/AQ/A
➢ You're very welcome!
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