
  

Using Linux as Hypervisor Using Linux as Hypervisor 
with KVMwith KVM

Qumranet Inc.

Andrea Arcangeli
andrea@qumranet.com

(some slides from Avi Kivity)
CERN - Geneve

15 Sep 2008

Copyright © 2007-2008 Qumranet, Inc.

mailto:andrea@qumranet.com


  

AgendaAgenda
➢ Overview/feature list
➢ KVM design vs other virtualization designs
➢ Shadow pagetables in vmx/svm
➢ Integration with Linux kernel VM
➢ QCOW2 image format
➢ Paravirtualization
➢ Pci-passthrough

Copyright © 2007-2008 Qumranet, Inc.



  

KVM OverviewKVM Overview
➢ KVM is a Linux kernel module that turns Linux into 

a hypervisor
➢ Requires hardware virtualization extensions

egrep 'vmx|svm' /proc/cpuinfo
➢ Supports multiple architectures: x86 (32- and 64- 

bit) s390 (mainframes), PowerPC, ia64 (Itanium)
➢ Competitive performance and feature set
➢ Advanced memory management (full swapping)
➢ Supports nested full virtualization on SVM (AMD)

Copyright © 2007-2008 Qumranet, Inc.



  

KVM FeaturesKVM Features
➢ NPT/EPT support  (server boost)
➢ KSM (share memory with COW)
➢ Disk image cloning, sharing, snapshot
➢ Ballooning
➢ Live migration (nfs as shared storage)
➢ Save and restore VM
➢ Virtio paravirtualization
➢ PCI-passthrough VT-D/IOMMU support

Copyright © 2007-2008 Qumranet, Inc.



  

KVM PhilosophyKVM Philosophy
➢ Reuse Linux code as much as possible
➢ Focus on virtualization only, leave other things to 
respective developers
➢ VM
➢ cpu scheduler
➢ Drivers
➢ Numa
➢ Powermanagement

➢ Integrate well into existing infrastructure
➢ just a kernel module

Copyright © 2007-2008 Qumranet, Inc.



  

Some closed source proprietary Some closed source proprietary 
VM designVM design

Hypervisor

Driver Driver Driver

Hardware

Console
VM

User
VM

User
VM

User
VM

Copyright © 2007-2008 Qumranet, Inc.



  

xen designxen design

Domain 0

Hypervisor

Driver Driver

Driver

Hardware

User
VM

User
VM

User
VM

Copyright © 2007-2008 Qumranet, Inc.



  

KVM design... way to go!!KVM design... way to go!!

Linux

Driver Driver Driver

Hardware

User
VM

User
VM

User
VM

KVM

Ordinary
Linux

Process

Ordinary
Linux

Process

Ordinary
Linux

Process

Modules

Copyright © 2007-2008 Qumranet, Inc.



  

KVM task modelKVM task model

kernel

task task guest task task guest

Copyright © 2007-2008 Qumranet, Inc.



  

KVM gust modeKVM gust mode
➢ Three modes for thread execution instead of the 
traditional two:
➢ User mode

➢ Kernel mode

➢ Guest mode (new!)

➢ A virtual CPU is implemented using a Linux thread 
(each thread has its own guest mode)

➢ The Linux scheduler is responsible for scheduling 
a virtual cpu, as it is a normal thread

Copyright © 2007-2008 Qumranet, Inc.



  

KVM userland <-> KVM kernelKVM userland <-> KVM kernel

Native Guest
Execution

Kernel
exit handler

Userspace
exit handler

Switch to
Guest Mode

ioctl()

Userspace Kernel Guest

Copyright © 2007-2008 Qumranet, Inc.



  

KVM emulationKVM emulation
➢ Most code executes natively but there is 
instruction emulation (interpreted) in these cases:
➢ wrprotect shadow pagetable faults (will mostly go 
away with out-of-sync)

➢ MMIO on emulated devices
➢ Big real mode on vmx (vmx has no real mode 
support, and vm86 misses the big real mode)

➢ Emulator is in the kernel to avoid round trip to 
userland and to support well SMP

➢ Because of big real mode emulator tries to 
emulate most instructions

Copyright © 2007-2008 Qumranet, Inc.



  

KVM process memory layoutKVM process memory layout

Linux Kernel
Address
Space

(includes
kvm*.ko)

Copyright © 2007-2008 Qumranet, Inc.

kvm-userland

Guest
 physical ram



  

KVM page fault and sptesKVM page fault and sptes
➢ As the CPU enters guest mode, the KVM page 

fault will be invoked and it'll establish the shadow 
pagetables

➢ Shadow pagetables simulates a secondary TLB 
refilled by software

➢ The primary TLB maps “host virtual” to “host 
physical”

➢ Shadow pagetables map “guest virtual” to “host 
physical”

➢ To establish sptes KVM must do “guest virtual” -> 
“guest physical” -> “host virtual” -> “host physical”

Copyright © 2007-2008 Qumranet, Inc.



  

VM layout with sptesVM layout with sptes

Guest physical (malloc)

Host RAM

Guest virtual address space
spte guest pte

2 1 2 1 2 2

host pte

Copyright © 2007-2008 Qumranet, Inc.



  

Guest virtual changesGuest virtual changes
➢ When guest virtual changes the shadow pagetable 
must change

➢ KVM caches shadow pagetables if guest pte 
wasn't modified:
➢ Not like the hardware TLB that would throw away 
all information when guest issues a TLB flush

➢ Frequent pte changes in the guest requires many 
VM-exits and shadow pagetable mangling

➢ EPT/NPT shadow paging extension avoids all the 
guest pte mangling virtualization overhead by 
allowing shadow pagetables to map “guest 
physical” to “host physical”

Copyright © 2007-2008 Qumranet, Inc.



  

VM layout with EPT/NPT sptesVM layout with EPT/NPT sptes

Guest physical (malloc)

Host RAM

Guest virtual address space

spte

guest pte

2 1 2 1 2 2

host pte

Copyright © 2007-2008 Qumranet, Inc.



  

EPT/NTP and computingEPT/NTP and computing
➢ There are two hardware TLB:

➢ primary for host: refilled by host ptes
➢ secondary for guest: refilled by shadow ptes

➢ When a guest TLB miss occurs:
➢ regular shadow pagetables maps the “guest 
virtual” to “host physical” and secondary TLB is 
filled by hardware in 4 memory accesses

➢ With EPT/NTP the shadow pagetable maps “host 
virtual” to “host physical” so harware will have to 
walk “guest virtual” to “guest physical” first. Each 
guest pte read requires 5 reads and total will be 
20 memory accesses for each TLB miss

Copyright © 2007-2008 Qumranet, Inc.



  

EPT/NTP runtime switch?EPT/NTP runtime switch?
➢ Regular shadow paging might be faster for 
number crunching with a thread per-cpu and not 
much guest VM activity

➢ EPT/NPT will surely be much faster for databases 
or similar apps as it eliminates lots of VM exits
➢ NOTE: I/O activity is not relevant with regard to 
shadow paging

➢ Benchmarks are needed
➢ It's also possible for KVM to autodetect the 
workload and switch from regular shadow paging 
to NPT/EPT at runtime automatically

Copyright © 2007-2008 Qumranet, Inc.



  

Linux Kernel integrationLinux Kernel integration
➢ Preempt notifiers:

➢ CPU doesn't fully exit guest mode if scheduler 
invocation doesn't switch the task in the CPU

➢ MMU notifier:
➢ Makes the guest physical ram totally swappable
➢ Provides transparent aging and unmapping 

methods to remove secondary MMU references
➢ Generic infrastructure: fits all kind of secondary 

MMUs, not just the KVM usage
➢ Multiple secondary MMUs can work on the 

same “mm” simultaneously without interference
Copyright © 2007-2008 Qumranet, Inc.



  

MMU notifierMMU notifier
➢ Linux doesn't know anything about the KVM MMU
➢ But the core Linux VM needs to:

➢ Flush shadow page table entries when it swaps 
out a page (or migrates it, or inflates the 
balloon...)

➢ Query the pte accessed bit to determine the age 
of a page to decide if it's part of the working set

➢ Every time Linux changes the primary MMU it 
notifies the secondary MMU drivers

➢ KVM ensures all relevant shadow pagetables are 
zapped before the MMU notifier method returns

Copyright © 2007-2008 Qumranet, Inc.



  

QCOW2 formatQCOW2 format
➢ Divides the logical volume size in clusters
➢ Appends newly written blocks to the qcow2 image 

➢ Raw images also allocate blocks only after writes 
(holes), but the file size fixed

➢ cp/scp/rsync by default won't recreate holes in 
destination, so small file is more user friendly

➢ Allows cloning an image with indefinite levels 
(qcow2 code is recursive)
➢ All parent images must be readonly, child is COW
➢ Snapshots are qcow2 images created on 
temporary files (changes be flushed to parent)

Copyright © 2007-2008 Qumranet, Inc.



  

KVM ParavirtualizationKVM Paravirtualization
➢ Emulated devices are the default with KVM/QEMU 
but they're slower

➢ MMIO accesses are emulated and they require an 
exit all the way down to userland if the driver is 
running in the I/O thread kvm-userland context

➢ This can result in dozen of exists for each packet 
delivered

➢ Paravirtualization is provided by the linux guest 
common code with a generic driver infrastructure

➢ KVM provides the paravirt support so the guest 
will enable paravirtualization during boot

Copyright © 2007-2008 Qumranet, Inc.



  

KVM with Linux virtioKVM with Linux virtio
➢ Timer

➢ More robust to get the time from the host with the 
equivalent of gettimeofday than to emulate 
PIT/HPET/RTC

➢ I/O
➢ Avoids IDE/SCSI emulation (still has to go to 
userland for qcow2 etc..)

➢ Networking
➢ A single VM-exit can deliver the packet to the 
virtio network device, can support GSO to deliver 
multiple packets in one exit, can run zerocopy

Copyright © 2007-2008 Qumranet, Inc.



  

PCI passthroughPCI passthrough
➢ New hardware provides VT-d/IOMMU to prevent 
PCI devices to DMA anywhere they want in RAM

➢ VT-d/IOMMU allow to securely associate a PCI 
device to a VM without risking to destabilize host 
kernel or other guests

➢ Without VT-d/IOMMU for pci-passthrough to work 
(insecurely):
➢ the spte mappings must become an identity
➢ pvdma must be supported by the guest

➢ VT-d/IOMMU also requires pvdma support to allow 
swapping (if guest is malicious the VM will be 
killed when VT-d throws an async exception)

Copyright © 2007-2008 Qumranet, Inc.



  

KVM ideal for cloud computingKVM ideal for cloud computing
➢ VDE virtual distributed ethernet can be bridged or 
routed to the real ethernet

➢ Using tap-fd it's possible to create a p2p encrypted 
mac-enforced (or routed) secure virtual ethernet

➢ Qcow2 base image distributed to all clients
➢ Applications unpacked at boot on top of qcow2 
base image, or distributed as child images

➢ Transparent environment
➢ Would like to run KVM on end user workstations 
with CPUShare to create lots of VM on demand 
and an omogeneous environemnt

Copyright © 2007-2008 Qumranet, Inc.



  

Q/AQ/A
➢ You're very welcome!

Copyright © 2007-2008 Qumranet, Inc.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

