
AthenaMP:
parallelizing Athena using fork and Copy-On-Write

Sébastien Binet

Lawrence Berkeley Laboratory

10-10-2008

S. Binet (LBL) AthenaMP & COW 10-10-2008 1 / 12

Thread-based or Process-based concurrency

Problem(s)

how to parallelize a huge code base as Athena ?

how to easily harvest the multi/many cores’ computing power ?

how to efficiently use the limited memory available per core ?

thread-based parallelism

same address space: memory efficiently shared

concurrency ok

hard to get them right (locks, races, . . .)

process-based parallelism

different processes ⇒ different address spaces: no mess
rely on the kernel to efficiently share memory for us

◮ let the experts do their magic
◮ 1 stone to kill 2 birds

S. Binet (LBL) AthenaMP & COW 10-10-2008 2 / 12

Thread-based or Process-based concurrency - II

fork & COW recipe

initialize your application

fork off as many subprocesses as you wish or can

let’em run

join/finalize when processing is done

Issues
sharing memory is easy but once ’unshared’, you can’t ’reshare’

◮ need to optimize when to fork

I/O (mostly the writting part)
◮ apart from HDF5+MPI (marginally used in Atlas) no parallel I/O available
◮ multiplexing through select/poll/epoll/asio/...
◮ ’poor man’ parallel I/O (each process has its own output file which are

concatenated/massaged in a post-processing step)

S. Binet (LBL) AthenaMP & COW 10-10-2008 3 / 12

AthenaMP implementation

rational
avoid client changes

shove the MP-stuff inside Athena instead of putting it as a layer on top of it

use the python module multiprocessing (backported from 2.6) for the
process management

write a new event loop manager as a usual Gaudi component to encapsulate
the parallelism handling

modify the I/O-related components appropriately

S. Binet (LBL) AthenaMP & COW 10-10-2008 4 / 12

class MpEventLoopMgr (PyAthena.Svc):
def executeRun (self , maxevt):

"""Process `maxevt` events as Run (beginRun->endRun)
"""
if self ._ncpus <= 0:

return self ._evtloop_mgr.executeRun (maxevt)

import multiprocessing as mp
_info ("nbr of workers: %i" , self ._ncpus)
_info ("master workdir: %s" , self ._wkdir)
workers = mp.Pool (processes= self ._ncpus,

initializer= self ._worker_bootstrap)
results = workers.map_async (func=batch_run,

iterable=(maxevt,) * self ._ncpus)

_worker_bootstrap

function called after fork

change work dir

reopen file descriptors

tickle the IoComponentMgr

S. Binet (LBL) AthenaMP & COW 10-10-2008 5 / 12

class IIoComponentMgr
{
/** allow a @c IIoComponent to register itself with this
* manager so appropriate actions can be taken when e.g.
* a @c fork(2) has been issued (this is usually handled
* by calling @c IIoComponent::io_reinit on every registered
* component)
*/

virtual
StatusCode io_register (IIoComponent * iocomponent) = 0;

/** @brief: reinitialize the I/O subsystem.
* This effectively calls @c IIoComponent::io_reinit on all
* the registered @c IIoComponent.
*/

virtual
StatusCode io_reinitialize () = 0;

/** @brief: finalize the I/O subsystem.
* Hook to allow to e.g. give a chance to I/O subsystems to
* merge output files.
*/

virtual
StatusCode io_finalize () = 0;

} ;

S. Binet (LBL) AthenaMP & COW 10-10-2008 6 / 12

class IIoComponent
{
/** callback method to reinitialize the internal state of
* the component for I/O purposes (e.g. upon @c fork(2))
*/

virtual
StatusCode io_reinit () = 0;

} ;

implemented by THistSvc , AthenaPoolSvc , . . .

reopen input ROOT files
open output ROOT files

◮ created in the worker’s own directory
◮ take care of migrating all the objects of ’already opened for writting’ ROOT files to

the new ones

S. Binet (LBL) AthenaMP & COW 10-10-2008 7 / 12

class MpEventLoopMgr (PyAthena.Svc):
def executeRun (self , maxevt):

"""Process `maxevt` events as Run (beginRun->endRun)
"""
if self ._ncpus <= 0:

return self ._evtloop_mgr.executeRun (maxevt)

import multiprocessing as mp
_info ("nbr of workers: %i" , self ._ncpus)
_info ("master workdir: %s" , self ._wkdir)
workers = mp.Pool (processes= self ._ncpus,

initializer= self ._worker_bootstrap)
results = workers.map_async (func=batch_run,

iterable=(maxevt,) * self ._ncpus)

batch_run

inject a filter algorithm in front of alg-sequence
◮ accept/reject events based on local process-id and current event number

effectively implement a round-robin filter

call the executeRun of the wrapped event loop manager

S. Binet (LBL) AthenaMP & COW 10-10-2008 8 / 12

class MpEventLoopMgr (PyAthena.Svc):
def finalize (self): ...

tickle IIoComponentMgr::io_finalize (when a forked process)
master will run the merge of output files

◮ usually trivial for ROOT files containing histos and ntuples
◮ trickier for ROOT/POOL files

⋆ take care of POOL links/references
⋆ actually just a few integers here and there to offset by the right amount
⋆ needs some modifications in the AthenaPOOL layer to enable usage of the fast-merge

mode (à la hadd)
⋆ right now: pedestrian/manual approach (slower)

◮ I wish there were a general pool_merge command !

S. Binet (LBL) AthenaMP & COW 10-10-2008 9 / 12

Status

tested on Athena reconstruction and physics jobs
runs ok but detailed cross check needed

◮ development+validation of the tools to perform cross check of data files’ content
⇒ in progress

fork is fired after initialize
◮ doesn’t capture the first event lazy initialization

⋆ loading of reflex dictionaries
⋆ some conditions data callbacks being triggered

◮ plan is to leverage the new Gaudi final state machine to migrate some of this lazy
initialization into start

◮ fork ing after first event is a bit more complicated but will be done

haven’t (yet?) parallelized interactive event loop manager

package multiprocessing backported from python 2.6 has a few races
fixed w.r.t. pyprocessing

still some races remain

S. Binet (LBL) AthenaMP & COW 10-10-2008 10 / 12

preliminary results

cpu
4procs 242.85s user 8.71s system 249% cpu 1:40.99 total
3procs 213.67s user 7.30s system 191% cpu 1:55.12 total
2procs 181.67s user 6.13s system 149% cpu 2:05.77 total
1procs 162.52s user 5.22s system 093% cpu 2:59.18 total
0procs 160.25s user 4.28s system 094% cpu 2:53.45 total

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
nbr procs

0

50

100

150

200

250

ti
m

e
 (

s)

CPU time VS n-procs

usr
sys
real

S. Binet (LBL) AthenaMP & COW 10-10-2008 11 / 12

preliminary results - II

memory

process: ∼ 700MB VMem and ∼ 420MB RSS
(before) evt 0: private: 004 MB | shared: 310 MB
(before) evt 1: private: 235 MB | shared: 265 MB
. . .
(before) evt50: private: 250 MB | shared: 263 MB

0 1 2 3 4 5 6 7 8 9
event number

0

50

100

150

200

250

300

350

m
e
m

o
ry

 (
M

B
)

memory sharing evolution

shared
private

S. Binet (LBL) AthenaMP & COW 10-10-2008 12 / 12

	Main Talk
	AthenaMP

