
Dealing with I/O in Multithreaded Environments

Marc Paterno

Fermilab Computing Division
CET group

Multicore Programming Mini-workshop
October 10, 2008

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 1 / 12



Multithreading may complement fork/copy-on-write

The announced topic of this workshop was multiprocess
programming and the fork/copy-on-write technique.
My primary goal is to remind us why multithread programming, at
several levels of granularity, is worthy of continued investigation.
My secondary goal is to point out some places where common
tools defeat our efforts at multithread programming, in the hope
that we can find some common solutions.

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 2 / 12



Making efficient use of resources: fork/copy-on-write

The simplest use of a multicore computer is to use it as if it were
several independent computers.
Because the memory footprint of our “typical” event-processing
processes is large, in part because of large ancillary data.1, we
may exhaust memory before we exhaust CPU power.
For coarse-grained parallelism2 the fork/copy-on-write technique
can help, when we share much ancillary data.
But when data are not shared (or when they become unshared,
and copying happens), we lose the benefit. In the limit of no
sharing, no benefit is gained. There are some important uses that
approach this limit:

when processing skim data, in which each event may come from a
different run;
when there are few events—or only one—to be processed, which is
common during software development.

1non-event data; e.g. detector geometry and calibration constants.
2concurrent processing of independent events.

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 3 / 12



Making efficient use of resources: multithread

Multithread programming has different advantages than
multiprocess programming. It allows a variety of granularities.

1 Event-level (coarse-grained) multithreading is similar to
fork/copy-on-write; it is beneficial in the same circumstances, and
loses its benefits in the same circumstances.

2 We can allow the event processing framework to schedule
concurrent work on the same event (medium-grained
multithreading).

3 We can allow individual framework modules to schedule concurrent
work on the same event (fine-grained multithreading).

4 Items 2 and 3 do not suffer from memory exhaustion due to
ancillary data.

We can use multiple granularities simultaneously, perhaps
optimizing each to adapt to the specific machine and job.
Perhaps we can benefit from clever use of local memory on each
core. We can leverage Fermilab’s local expertise (primarily in the
LQCD community) in NUMA.

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 4 / 12



Making efficient use of resources: concurrent i/o

Modern machines frequently support multiple i/o channels, and
have networked disks.
With such machines, we can often benefit from concurrent i/o.
Especially in multithread applications, we can:

read events, and perhaps uncompress or preprocess them,
independently of the real processing work;
write events independent of reading them; and
write events to different output streams simultaneously.

What can we learn from the experience of others in the scientific
community (HDF5, parallel netCDF, MPI-IO)?
Concurrent i/o may help to optimize our use of both CPU
resources and i/o resources.

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 5 / 12



A real user’s (failed) multithreaded ntuple writing program

Each event is given to every worker.

reading thread

worker/writer thread 0

worker/writer thread 1

worker/writer thread 2

worker/writer thread 3

read

analysis 0

analysis 1

analysis 2

analysis 3

writing 0

writing 1

writing 2

writing 3

This user wanted to run
several (actually 8)
analyses simultaneously,
each one filling
independent histograms
and writing an independent
ntuple.
The program would run for
a fraction of a second and
crash; our group was
asked to help diagnose the
problem.
Failures happened both in
creating and filling
histograms and in writing
the ntuples.

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 6 / 12



A real user’s (failed) multithreaded ntuple writing program

Each event is given to every worker.

reading thread

worker/writer thread 0

worker/writer thread 1

worker/writer thread 2

worker/writer thread 3

read

analysis 0

analysis 1

analysis 2

analysis 3

writing 0

writing 1

writing 2

writing 3

This user wanted to run
several (actually 8)
analyses simultaneously,
each one filling
independent histograms
and writing an independent
ntuple.
The program would run for
a fraction of a second and
crash; our group was
asked to help diagnose the
problem.
Failures happened both in
creating and filling
histograms and in writing
the ntuples.

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 6 / 12



The modification needed to make the program run

Each event is given to every worker. I/O bottleneck from serialization.

reading thread

thread 0

thread 1

thread 2

thread 3

ntuple writing thread

read

analysis 0

analysis 1

analysis 2

analysis 3

write 0 write 1 write 2 write 3

User wrote his own simple histogram code that was thread-safe.

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 7 / 12



CMS would benefit from concurrent I/O

The CMS event-processing framework, and its driver cmsRun,
were designed for easy extension to concurrent event processing.
We intended to support coarse-grained or medium-grained
parallelism.

Use the producer-consumer model for concurrency.
One EventProcessor would manage an InputSource, running in
its own thread, and several worker threads each running all (or
some of) the user-configured paths, and several output threads,
each running a single OutputModule.
The single InputSource would be the “producer” of events.
Events would be passed to a worker thread as soon as one
became available.
Events would be written to output as soon as they had finished the
worker threads.

This solution requires that the I/O subsystem support concurrent
reading and writing, and multiple simultaneous writers.
This is not the only example of where CMS would benefit from
concurrent I/O.
M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 8 / 12



Concurrent serialization and deserialization

We read parts of each event from many TBranches, spread
across several TTrees.
We write events similarly.
To avoid I/O bottlenecks we would like to read concurrently while
writing.

Events being written are independent of that being read.
Global locking that serializes all reading and writing is not
acceptable; the I/O bottleneck would render many programs
unscalable.

We write (possibly different) parts of the same event to different
output streams.

We want to write the streams concurrently.
We must be able to write the same event in different output
modules.

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 9 / 12



Concurrent creation, filling and drawing of histograms

Module instances (EDProducers, etc.) in different threads need to
independently create and fill their own histograms.
Histogramming code need not (and should not) provide
object-level locking; such designs often are inefficient. Client code
should assure safety of shared objects.
Library code should not share objects “behind the scenes” in a
fashion that prevents concurrent use. Coarse-level serialization
that defeats the purpose of user-level concurrency is not an
acceptable solution.
GUI programs must also support display-driver threads that paint
objects on the screen simultaneously with the other work.

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 10 / 12



Simultaneous reading, writing, and histogramming

We need to create and fill histograms in the same program that is
performing concurrent I/O.
A full solution to our concurrency programs should allow
concurrent reading of one event, writing of multiple events each to
multiple output modules, concurrently with creation and filling of
histograms which are not shared between threads.
This solution can not be obtained by coarse-grained locking that
defeats the concurrency goals of the design.

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 11 / 12



Summary

Multithreaded programming may complement a fork/copy-on-write
strategy for efficient use of multicore processors.

Multithreaded programming may provide benefits in conditions where
fork/copy-on-write does not help.

Processing samples with little shareable data, e.g. skim data
samples.
Processing single events, e.g. debugging.

Concurrent i/o is valuable, especially in multithreaded applications.

We should pursue multithread support in our common libraries. My
group at Fermilab hopes to pursue this within GEANT4.

M. Paterno (Fermilab) Dealing with I/O in Multithreaded Environments 12 / 12


