
Update on PROOF-Lite Update on PROOF-Lite

G. GANISG. GANIS
CERN / PH-SFTCERN / PH-SFT

for the ROOT teamfor the ROOT team

Workshop on Parallelization and MultiCore Workshop on Parallelization and MultiCore
technologies for LHC, CERN, Oct 2008technologies for LHC, CERN, Oct 2008

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
22

OutlineOutline

 Reminder: PROOF, PROOF-LiteReminder: PROOF, PROOF-Lite
 Optimizing IOOptimizing IO

 Parallel unzippingParallel unzipping
 SSDSSD

 First look at with copy-on-write start-upFirst look at with copy-on-write start-up
 SummarySummary

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
33

PROOF in a slidePROOF in a slide

PROOF: Dynamic PROOF: Dynamic approach to end-user HEP analysis on distributed approach to end-user HEP analysis on distributed
systems exploiting the intrinsic parallelism of HEP datasystems exploiting the intrinsic parallelism of HEP data

subsub
mastermaster

workersworkers MSSMSS

geographical domain

toptop
mastermaster

subsub
mastermaster

workersworkers MSSMSS

geographical domain

subsub
mastermaster

workersworkers MSSMSS

geographical domain

master

clientclient

list of outputlist of output
objectsobjects

(histograms, …)(histograms, …)

commands,commands,
scriptsscripts

PROOF enabled facilityPROOF enabled facility

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
44

PROOFPROOF

 PROOF has been developed having in mind PROOF has been developed having in mind
the case of T2/T3 analysis facilities, clusters the case of T2/T3 analysis facilities, clusters
O(100) nodesO(100) nodes

 Its flexible multi-tier architecture allows to Its flexible multi-tier architecture allows to
adapt to very different situations, and to move adapt to very different situations, and to move
in size in both directionsin size in both directions
 Expand to federate clusters, eventually to the GRIDExpand to federate clusters, eventually to the GRID

 See A. Manarof at PROOF07See A. Manarof at PROOF07
 Shrink to few machinesShrink to few machines

 Multi-Core is at the extreme: one machine, lot Multi-Core is at the extreme: one machine, lot
of CPU power … of CPU power …

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
55

PROOF LitePROOF Lite

 PROOF Lite is a realization of PROOF in 2 tiersPROOF Lite is a realization of PROOF in 2 tiers
 The client starts and controls directly the workersThe client starts and controls directly the workers
 Communication goes via UNIX sockets Communication goes via UNIX sockets

 No need of daemons:No need of daemons:
 workers are started via a call to ‘system’ and call workers are started via a call to ‘system’ and call

back the client to establish the connectionback the client to establish the connection

 Starts NStarts NCPUCPU workers by default workers by default

C

W

W

W

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
66

PROOF Lite (2)PROOF Lite (2)

Additional reasons for PROOF-LiteAdditional reasons for PROOF-Lite
 Can ported on WindowsCan ported on Windows

 There is no plan to port current daemons to There is no plan to port current daemons to
WindowsWindows

 Needs a substitute for UNIX socketsNeeds a substitute for UNIX sockets
 Use TCP initiallyUse TCP initially

 Can be easily used to test PROOF code locally Can be easily used to test PROOF code locally
before submitting to a standard clusterbefore submitting to a standard cluster
 Some problems with users’ code are difficult to Some problems with users’ code are difficult to

debug directly on the clusterdebug directly on the cluster

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
77

PROOF-Lite performancePROOF-Lite performance

 CPU-boundCPU-bound
 already quite goodalready quite good

 IO-boundIO-bound
 critically depends on I/O performance as for all critically depends on I/O performance as for all

systemssystems

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
88

Scaling processing a tree, exampleScaling processing a tree, example

 Data sets 2 GB (fits in memory), 22 GBData sets 2 GB (fits in memory), 22 GB

2 GB, no
memory
refresh

22 GB, IO
bound

 CPU bound

4 cores, 8 GB RAM, single HDD

2 GB, no
memory
refresh

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
99

Using cores to improve IO Using cores to improve IO

 When reading data a large fraction of time is When reading data a large fraction of time is
spent in decompressingspent in decompressing

 This a case where additional core(s) may help This a case where additional core(s) may help
and it is a dedicated task under control of and it is a dedicated task under control of
ROOT which could already be done now in a ROOT which could already be done now in a
separated threadseparated thread

 Now available in ROOTNow available in ROOT

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
1010

Basic Idea Basic Idea
Courtesy of L. Franco

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
1111

Results on a 8 core machine Results on a 8 core machine

 8 cores, 16 GB RAM, 2.5 TB under RAID 58 cores, 16 GB RAM, 2.5 TB under RAID 5

Parallel
unzipping

Standard
approach

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
1212

 Parallel unzipping: commentsParallel unzipping: comments

 One thread per fileOne thread per file
 ~20% improvement for less than 4 workers~20% improvement for less than 4 workers
 4 workers is equivalent to about 8 processes4 workers is equivalent to about 8 processes

 Above that there are more processes than cores Above that there are more processes than cores
with a slowly increasing negative interferencewith a slowly increasing negative interference

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
1313

 Solid State Disk Testing with PROOFSolid State Disk Testing with PROOF

 BNL PROOF Farm Configuration for this testBNL PROOF Farm Configuration for this test
 10 nodes - 16 GB RAM each
 80 cores: 2.0 GHz Kentsfields
 5 TB of HDD space (10x500 GB)
 640 GB SSD space (10x64 GB)

Courtesy of S. Panitkin, BNL

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
1414

 Solid State Disk @ BNLSolid State Disk @ BNL

 Model: Mtron MSP-SATA7035064Model: Mtron MSP-SATA7035064
 Capacity 64 GB
 Average access time ~0.1 ms (typical HD ~10ms)
 Sustained read ~120MB/s
 Sustained write ~80 MB/s
 IOPS (Sequential/ Random) 81,000/18,000
 Write endurance >140 years @ 50GB write per day
 MTBF 1,000,000 hours
 7-bit Error Correction Code

Courtesy of S. Panitkin, BNL

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
1515

 Test ConfigurationTest Configuration

 1+1 or 1+8 nodes PROOF farm configurations1+1 or 1+8 nodes PROOF farm configurations
 2x4 core Kentsfield CPUs per node, 16 GB RAM per node
 All default settings in software and OS
 Different configuration of SSD and HDD hardware depending on

tests
 “PROOF Bench” suit of benchmark scripts to simulate analysis in

ROOT.
 Data simulate HEP events ~1k per event
 Single ~3+ GB file per PROOF worker in this tests

 Reboot before every test to avoid memory caching effects
 This set of tests emulates interactive, command prompt root

session
 Plot one variable, scan ~10E7 events, ala D3PD analysis

 Looking at read performance of I/O subsystem

Courtesy of S. Panitkin, BNL

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
1616

 SSD versus HDDSSD versus HDD

 SSD holds clear speed advantage SSD holds clear speed advantage
 ~ 10 times faster in concurrent read scenario~ 10 times faster in concurrent read scenario

CPU limited

Courtesy of S. Panitkin, BNL

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
1717

 SSD vs HDD on 8 Node ClusterSSD vs HDD on 8 Node Cluster

 Aggregate (8 node farm) analysis rate as a function of number of Aggregate (8 node farm) analysis rate as a function of number of
workers per nodeworkers per node

 Almost linear scaling with number of nodesAlmost linear scaling with number of nodes

Courtesy of S. Panitkin, BNL

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
1818

 Startup optimizations: copy-on-writeStartup optimizations: copy-on-write

 Useful in optimizing the memory print in the Useful in optimizing the memory print in the
case of large input or condition data which is case of large input or condition data which is
typically the same and constant for all the typically the same and constant for all the
processesprocesses

 The fork() should occur at the very last The fork() should occur at the very last
moment, when all the settings are donemoment, when all the settings are done

 In our prototype it happens just before calling In our prototype it happens just before calling
Process(...) Process(...)

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
1919

 Copy-on-write: PROOF-Lite prototypeCopy-on-write: PROOF-Lite prototype

 At startup only a worker out of N is startedAt startup only a worker out of N is started

 All the initializations are done, i.e. all the All the initializations are done, i.e. all the
needed packages are loaded and the input list needed packages are loaded and the input list
createdcreated

 When invoking Process(...), internally the When invoking Process(...), internally the
controller (client/master) ask the single worker controller (client/master) ask the single worker
to clone N-1 times.to clone N-1 times.

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
2020

 Copy-on-write: first numbersCopy-on-write: first numbers

 We see the effect on the memory foot print We see the effect on the memory foot print
already in a very simple and light examplealready in a very simple and light example
 StandardStandard

 Copy-on-write enabledCopy-on-write enabled

 50 MB saved out of 170 MB50 MB saved out of 170 MB

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 4728 ganis 20 0 176m 41m 23m S 0 2.1 0:03.58 root.exe
 4738 ganis 20 0 108m 28m 15m S 0 1.4 0:01.10 proofserv.exe
 4740 ganis 20 0 108m 28m 15m S 0 1.4 0:01.24 proofserv.exe
 4743 ganis 20 0 108m 27m 15m S 0 1.4 0:01.06 proofserv.exe
 4750 ganis 20 0 108m 28m 15m S 0 1.4 0:01.26 proofserv.exe

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 9410 ganis 20 0 177m 41m 23m S 0 2.1 0:03.48 root.exe
 9420 ganis 20 0 108m 28m 15m S 0 1.4 0:01.66 proofserv.exe
 9434 ganis 20 0 108m 19m 7388 S 0 1.0 0:00.38 proofserv.exe
 9435 ganis 20 0 108m 19m 7176 S 0 1.0 0:00.30 proofserv.exe
 9436 ganis 20 0 108m 19m 7200 S 0 1.0 0:00.64 proofserv.exe

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
2121

 Copy-on-write: PROOFCopy-on-write: PROOF

 Interesting also for standard PROOFInteresting also for standard PROOF

 Needs to start only 1 worker per machine, so Needs to start only 1 worker per machine, so
that all the initializations are donethat all the initializations are done

 Just before start procesing the additional Just before start procesing the additional
workers are creating, possibly taking into workers are creating, possibly taking into
account the load in the each nodeaccount the load in the each node

 Ongoing workOngoing work

15/04/200715/04/2007 G. Ganis, Parall.-MultiCore WorkshopG. Ganis, Parall.-MultiCore Workshop
2222

SummarySummary

 PROOF performances in processing trees PROOF performances in processing trees
benefit from IO optimizations both coming benefit from IO optimizations both coming
from smart software or from better hardwarefrom smart software or from better hardware
 Parallel unzipping may give 20% performance gain Parallel unzipping may give 20% performance gain

under certain circumstancesunder certain circumstances
 SSD technology can give O(10) factors wrt standard SSD technology can give O(10) factors wrt standard

HDDHDD
 Copy-on-write techniques for optimized worker Copy-on-write techniques for optimized worker

startup are being prototyped on PROOF-Lite startup are being prototyped on PROOF-Lite
 First results encouragingFirst results encouraging
 Integration into PROOF under studyIntegration into PROOF under study

	PROOF on multi-core machines
	Outline
	PROOF in a slide
	PROOF
	Slide 5
	PROOF Lite (2)
	Summary
	Scaling processing a tree
	Slide 9
	Using cores to improve IO
	Slide 11
	ROOT way to exploit multiple resources
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

