
Parallel Programming in Data
Analysis Software

Alfio Lazzaro
Università degli Studi and INFN, Milano

CERN, Geneva

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008 2

 The case
• In general all methods are based on optimization problems: find a

maximum (for example in case of Statistical Significance
Maximization or Maximum Likelihood) or a minimum (Expected
Prediction Error) of a function

• This is done by numerical algorithms

• Most commonly used are based on Gradient Descent Methods,
which require the calculation of the several derivates of the
function

• Some example of Genetic Algorithm uses

• This procedure can be very slow, depending on the number of free
parameters to be determined, the number of input events, and the
complexity of the model

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008 3

Maximum Likelihood Fits
• In Maximum Likelihood fits we have to maximize the likelihood

function

• In general we minimize the Negative Log-Likelihood Function

• The minimization is performed as function of free parameters: nj
number of events, parameters of Pj

j species (signals, backgrounds)
nj number of events for specie j

Pj probability
N number total of events to fit

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008 4

Minimization
• The most largely used algorithm for minimization is MINUIT

• MINUIT uses the gradient of the function to find local minimum
(MIGRAD), requiring

• The calculation of the gradient of the function for each free
parameter, naively

• The calculation of the covariance matrix of the free parameters
(which means the second order derivates)

• The minimization is done in several steps moving in the direction
of the negative gradient value: each step require the calculation of
the gradient

2 per derivate

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008 5

Minimization
• In case of NLL function, it requires the calculation of the function for each free

parameter in each minimization step

1. Many free parameters means slow calculation

2. Remember the definition of NLL

 The computational cost scales with the N number of events in the input
sample

3. Note, also, that Pj need to be normalized (calculation of the integral) for
each iteration, which can be a very slow procedure if we don’t have an
analytical function

• Complex fits take several hours (or days)!

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008 6

Parallelization
• RooFit (Maximum Likelihood fit package) implements the

possibility to split the likelihood calculation over different threads
(point 2)

• Likelihood calculation is done on sub-samples

• Then the results are collected and summed

• You gain a lot using multi-cores architecture over large data
samples, scaling almost with a factor proportional to the
number of threads

• However, if you have a lot of free parameters, the bottleneck
become the minimization procedure (point 1)

• Split the derivate calculation over several MPI processes

• There is not an official implementation of such a algorithm, but
some tests done by people in BaBar

• You can gain almost a factor proportional to the number of
processes (almost...)

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008 7

Parallelization

“Trivial” splitting of the NLL function calculation for NPAR
parameters over NCPU CPUs: NPAR/NCPU parameters for
each CPU

Example:
NPAR = 10, NCPU = 3

CPU 1 = 4 pars
CPU 2 = 3 pars
CPU 3 = 3 pars{ Max threads = NPAR

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008

Parallelization

From Brian Meadows talk at RooFit Mini Workshop @ SLAC (December 2007):
http://www.slac.stanford.edu/BFROOT/www/doc/Workshops/2007/BaBar_RooFit/Agenda.html

It works well in case of large number of parameters

8

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008 9

Parallelization - Work
•Based on ROOT 5.20 and MINUIT2.

• Lorenzo already implemented a OpenMP version of MINUIT2

•Hybrid of the likelihood calculation using multi-threads minimization process using MPI
==> higher gain in case of multi-cores/MPI case

•Work done using resources at CINECA HPC Center in Italy (Bologna):
https://hpc.cineca.it/

https://hpc.cineca.it
https://hpc.cineca.it

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008

Details -- Ctor
• Added a new class in the MINUIT2 package which deals with MPI: MPIProcess

• Inserted define directives to switch off MPI at level of compilation

10

{MPI

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008

Pars Distribution per Node
• Results for derivates organized in a vector of doubles

• Index of the vector per node:

11

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008

Synchronization
• Each node calculates his group of derivates

• Each node scatters the results to all other nodes

• At the end all nodes have the results for all derivates

12

0 A B
1 C D

0 A B C D
1 A B C D

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008

Call in MINUIT2
• MPIProcess declared in the class for Gradient calculation

(Numerical2PGradientCalculator)

• Each node calculates his group of derivates

• Synchronization: At end each node has all derivate results and can
do the remaining part of the (serial) code

• all nodes do the same serial part

• The full procedure is repeated for each step in the minimization
processes

13

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008 14

Parallelization - Example

60 cores

30 cores

15 cores

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008 15

Parallelization - To do
• In some case the bottleneck is the integral calculation (in Dalitz plot

analysis we have integral in several variables, which is very slow to
compute)

• There is not parallel implementation of the normalization integral
calculation

• Needs a general infrastructure in RooFit

• Better balance of the parameters over the different nodes:

• some parameters are slower than other (they involve long
integral calculations)

• Possibility to split also the likelihood calculation using MPI (partial
implementation using a cartesian topology)

• Test on “conventional” HEP cluster (high latency)

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008 16

Other example of HPC
• Selection of events applying different cuts: PROOF project,

implemented in ROOT:

• allowing transparent analysis of large sets of ROOT files in
parallel on compute clusters or multi-core computers, splitting
the data sample

• Bagging and Boosting Technique (Boost Decision Tree) can be very
CPU-time consuming

• Several variables on several events

• Trees are almost independent, they can split in a parallel
architecture

• Neural Networks can implemented on parallel architectures

• In HEP community there is not mention of Trees and Neural
Networks (as far as I know) using HPC

Alfio Lazzaro
MultiCore R&D mini-workshop, CERN

10/10/2008 17

Conclusions
•Work is ongoing for NLL parallelization:

•require changes in RooFit and MINUIT2

•HEP is entering in the precise measurements era:

•Huge quantity of data available

•More data will be available soon from LHC experiments

•Most of the data analysis techniques are very CPU-time consuming

•We can benefit using parallel version of the code

•In most of the case easy to implement

•Few implementations already available in HEP, but a lot a work still to
do for a full parallelization

•Hardware and software (compilers, MPI, ...) technologies ready to go!

•Possibility to use massive parallel solution: GPUs, FPGA, ...

