
Shared MemoryShared Memory
Prototype for LHCPrototype for LHC

Status and PlansStatus and Plans

MultiCore R&D Workshop
Parallelization of the Event-processing Framework

Using Multiple Processes/Threadsg p
10th October 2008

Marc Magrans de Abril
Vincenzo Innocente (supervisor)Vincenzo Innocente (supervisor)

Outline

1 Problem1. Problem

2. Objectives

3. Results

4 T l4. Tools

5. Lessons Learned5. Lessons Learned

References

More details about the development process:

https://twiki.cern.ch/twiki/bin/view/LCG/SharedMemoryLhc

Outline

1. Problem1. Problem

2. Objectives

3. Results

4 T l4. Tools

5. Lessons Learned5. Lessons Learned

References

1 Problem (1/3)
PROBLEM: CMS Reconstruction Footprint shows large condition data

How to share common data between different process?p

S. Jarp

April 2008p
http://indico.cern.ch/getFile.py/access?
contribId=23&sessionId=0&resId=0&m
aterialId=slides&confId=28823

1 Problem (2/3)
How can we reach our objective?

• Shared Libraries:Shared Libraries:
• code-only

• Multi-threading:
E t P th d• Event Processor ↔ thread

• Needs Integration of programs into threads
• Copy-on-write (COW) or KSM-like:y ()

• Event Processor ↔ process
• Forked process: Needs Integration of programs into super-program
• read only• read-only
• A single write invalidates the whole page!

•Shared Memory:
• Event Processor ↔ process
• COW still works
• read-writeread write
• Needs factorization of shared objects

1 Problem (3/3)
What we need to answer?

• Percentage of shared memory?
i t W h bl !!N

G

• private We have a problem!!
• shared (smaps, P. Mato measurements, >50%, LHCb)

Y
SA

VI

• Percentage of read-write shared memory?
• Conditions data modification in long runs
• Invalidation of COW pages non deterministicEM

O
RY

• Invalidation of COW pages non-deterministic

• Integration/factorization cost of Event Processors: vs
 M

E

BLACK BOXWHITE BOX

teg at o / acto at o cost o e t ocesso s
Shared memory > Multi-threaded > COW > Shared Libraries

C
O

ST

BLACK BOXWHITE BOXC

Outline

1 Problem1. Problem

2. Objectives

3. Results

4 T l4. Tools

5. Lessons Learned5. Lessons Learned

References

2 Objectives

• Study possibilities and limitations of shared memory

• Provide tested code for developers

• boost::interprocess (avoid mmap, pthreads, ipc, shm, etc.)boost::interprocess (avoid mmap, pthreads, ipc, shm, etc.)

Outline

1 Problem1. Problem

2. Objectives

3. Results

4 T l4. Tools

5. Lessons Learned5. Lessons Learned

References

3 Results (1/2)

Factory class provides:
• Creation/destruction of shared memory segments and STL allocators

C ti /d t ti f h d bj t• Creation/destruction of shared objects
• Creation/destruction of shared STL containers
• Thread-and-process-safe (WIP)
• Exception-safe (WIP)

OWNER USER
shName("MySharedSegment");

Factory f(shName, 10000*10000);

shName("MySharedSegment");

Factory f(shName);

USER

double& d = f.create<double>("d");
d = rand()/rand();
std::cout << "d = " << d << std::endl;

f d t d bl ("d")

double& d = f.get<double>("d");
std::cout << "d = " << d << std::endl;

f.destroy<double>("d");

sources:
https://twiki.cern.ch/twiki/bin/viewfile/LCG/SharedMemoryLhc?rev=1;filename=factory20081002.zip

3 Results (2/2)

Shared memory allows:
• Shared memory IS NOT TRANSPARENT

POD bj t• POD objects
• Arrays of POD objects
• STL containers with POD obejcts
• Smart Pointers to shared memory (e.g. Linked List)
• Objects with virtual methods (FORKED processes).
• Dynamic library loading of objects with virtual methods should be BEFORE• Dynamic library loading of objects with virtual methods should be BEFORE

forking.

Sh d d NOT llShared memory does NOT allow:
• Shared static objects
• Normal pointers to shared memory
• Object with virtual methods (NON-FORKED processes)

sources:

https://twiki.cern.ch/twiki/bin/viewfile/LCG/SharedMemoryLhc?rev=1;filename=factory20081002.zip

Outline

1 Problem1. Problem

2. Objectives

3. Results

4 T l4. Tools

5. Lessons Learned5. Lessons Learned

References

4 Tools (1/2)

GDB 6.8: Forked process debugging (GDB manual section 4.10)

t f ll f k d [t/ hild] Ch th b i d b d ft f kset follow-fork-mode [parent/child]: Choose the process being debugged after fork
set detach-on-fork [on/off]: if on all the process will be under the control of GDB
info forks: List of forked processid
process [processid]: Debug another forked process

4 Tools (2/2)

proc/<pid>/smaps scripts: COW and shared memory usage

) l (i Li S)a) smem.pl (requires Linux::Smaps)
http://bmaurer.blogspot.com/2006/03/memory-usage-with-smaps.html

Resident Set Size. Physical
b) mem_usage.py
http://wingolog.org/archives/2007/11/27/reducing-the-footprint-of-python-

applications

y
Memory Usage

Outline

1 Problem1. Problem

2. Objectives

3. Results

4 T l4. Tools

5. Lessons Learned5. Lessons Learned

References

5 Lessons Learned

• boost::interprocess is professional and well-documented
• Shared memory usage IS NOT TRANSPARENT:

• Synchronization
• Creation/Destruction of memory and objects
• Restrictions: pointers statics virtual classes• Restrictions: pointers, statics, virtual classes

More complexity than multi-threaded
• Factory pattern simplifies client code syntaxy p p y
• gdb 6.8 allows inter-process debugging
• Memory usage can be analyzed with smaps scripts

Q &A

THANKS!THANKS!

References

6 References
S. Jarp, “(Some of) the Issues Facing CERN and HEP in the Many-core Computing Era”,
Workshop on Virtualization and Multi-core technologies for the LHC, Apr 2008,
http://indico.cern.ch/getFile.py/access?contribId=23&sessionId=0&resId=0&materialId=slide
s&confId=28823

M. Zanetti, “Filter Unit Shared Memory Buffer”,
https://twiki.cern.ch/twiki/bin/view/CMS/FUShmBuffer
V. Innocente, “How o exploit Multi-core”, Workshop on Virtualization and Multi-core
technologies for the LHC, Apr 2008,
http://indico.cern.ch/getFile.py/access?contribId=19&sessionId=1&resId=0&materialId=slide
s&confId=28823

Boost Interprocess Library,
http://www.boost.org/doc/libs/release/libs/interprocess/index.html

Workshop on Virtualization and Multi-core technologies for the LHC, Apr 2008,
http://indico.cern.ch/conferenceDisplay.py?confId=28823

M Magrans de Abril “Shared Memory for the LHC”M. Magrans de Abril, Shared Memory for the LHC ,
https://twiki.cern.ch/twiki/bin/view/LCG/SharedMemoryLhc

Qumranet , Increasing the Virtual Memory Size with KSM,
http://kvm qumranet com/kvmwiki/KvmForum2008?action=AttachFile&do=get&target=kdf20http://kvm.qumranet.com/kvmwiki/KvmForum2008?action=AttachFile&do=get&target=kdf20
08_12.pdf

