
Progress Report Toward a Thread-Parallel Geant4

Gene Cooperman and Xin Dong
High Performance Computing Lab

College of Computer and Information Science
Northeastern University

Boston, Massachusetts 02115
USA

{gene,xindong}@ccs.neu.edu

ParGeant4

• A parallel version (separate processes) of Geant4 already exists

• examples/extended/parallel/ParN02 (and ParN04)

• Master/Worker paradigm

• Utilize TOP-C “Raw Interface”

• Event-level parallelism to simulate separate events on remote processes

• For each event, there is a corresponding seed for CLHEP random number
generator

• Seeds come from a sequence of random numbers on master

• No recompilation of Geant4 libraries

• Nearly linear speedup

• Reproducibility: Given same initial random seed, ParGeant4 produces
same result.

examples/extended/parallel/ParN02

Goal of Thread-Parallel Geant4

• Efficiency for future many-core CPUs

• Testing and validation on today’s 4-, 8- and 16-core nodes

• New implementation (independent of ParGeant4, but Leveragingthat experience)

• Unlike ParGeant4, requires re-compilation of some of Geant4 source code for thread-
parallel operation

• Preliminary results available based on testing onfullCMS bench1.g4

Initial Results

Current results:
testing onfullCMS bench1.g4 (electromagnetics), 1 master and 3 worker threads:

1. Phase I: multi-threaded implementation; code sharing (same asmultiple processes), but
no data sharing
(600 MB:≈ 30 MB text/code + 4× 140 MB) (DONE)

2. Phase II: Sharing of geometry, materials, particles, productioncuts
(400 MB:≈ 30 MB text/code + 80 MB shared geom. + 4× 70 MB)
(DONE, UNDERGOING VALIDATION)

3. Phase III: Sharing of data for electromagnetic physics processes
(300 MB:≈ 30 MB text/code + 80 MB shared geom. + 70 MB electromagnetics physics
tables + 4× small(TODO)

4. Phase IV: Other physics processes(TODO)

5. Phase V: General Software Schema: new releases of sequential Geant4 drive
corresponding multi-threaded releases(TODO)

Phase III: easy in principle, since physics tables are read-only, aside from small caches:
Difficulty is that each physics table may have a distinct author using a distinct API

Multi-Processing: Forked Processes and Copy-On-Write

The UNIX fork system call uses copy-on-write semantics (COW) to create a child process
that shares all data with the parentuntil the parent or child writes to a particular page. This
provides easy sharing of those data pages that are accessedonly in read-only modeby parent
and child.

A Copy-On-Write version of Geant4 has been written. Its uses are two-fold:

1. Reference version:to compare Multi-Threaded Geant4 with best alternative technology.

2. Easy Data Sharing:few assumptions, less dependency on specific Geant4 source code.

Issues:

• Coarser granularity:If even one field of a C++ object is read-write, then the entire data
page containing the object is not shared.

• When to fork:Geant4 initialization of different components can happen prior to the first
event, during the first event, or during later events (lazy initialization). We chose to fork
after the first event, which captures most of the initializations.

Summary of Data Sharing

Measured for one master process/thread and three workers.
Testing onfullCMS bench1.g4 (electromagnetics).
Sequential running time: 6 hours

Implementation Total Memory Additional Total Memory Runtime
on master Memory (master

per Worker + 3 workers)
Multi-Processing (COW) 180 MB 70 MB 400 MB 21

4 hours
Multi-Threaded (Phase I) 180 MB 140 MB 600 MB 21

4 hours
Multi-Threaded (Phase II) 180 MB 70 MB 400 MB 21

4 hours
Multi-Threaded (Phase III) 180 MB small 300 MB 21

4 hours
(estimate, not completed)

Methodology

• Patch parser.c of gcc to output static and global declarations in Geant4
source code; recompile and reinstall gcc

• Build Geant4 and collect output of parser.c (similar to UNIX grep)

1. static variables in each function

2. static class members

3. global variables and if they exist, all corresponding “extern” declara-
tions

Status and Future Plans

Status:
• 10,000 lines of Geant4 modified automatically

• 100 lines of special cases modified by hand

• months of effort to find last few bugs (tested using fullCMS)

• goal of automatically patching each new Geant4 release

Note: We have seen that Phase I is multi-threaded, but all data is thread
private. Hence, no bugs. Phases II and later introduce sharing of
data. Testing on fullCMS, Geant4 unit tests, and other apps reveals bugs
(additional special cases to be modified by hand).

Future Plans:
• Tool for automatically finding conflicts in data shared amongthreads.

• Measure cache misses (better indication of true sharing)

• Accurate measure of dynamic data sharing (shared pages accessedper
second) versus non-shared pagesper second

Related Work: Checkpoint-Restart

• DMTCP:http://sourceforge.net/projects/dmtcp
(free, open-source)

• DMTCP (Distributed Multi-Threaded Checkpointing) is a tool to trans-
parently checkpointing (copying to disk) the state of a computation

• It operates transparently (no modification of the user binary).

• In the case of Multi-threaded Geant4 or Multi-Process Geant4 (Copy-On-
Write), it can checkpoint Geant4after initialization. Restarting from this
point saves time for production runs.

Recently, we demonstrated checkpointing of runCMS. RunCMSconsists of
up to 2 million lines of code and up to 700 dynamic shared libraries. A
typical case (checkpointing 12 minutes after startup) is:
Size: 600 MB memory image (225 MB compressed on disk)
Dynamic shared libraries in RAM: 540
Time to checkpoint: 25 seconds; Time to restart from disk: 18seconds

http://sourceforge.net/projects/dmtcp

Questions?

Details: Process Image Layout

• Text: This segment, also known as the code segment, holds theexecutable
instructions of a program

• Data: This section holds all initialized data. Initializeddata includes
statically allocated and global data that are initialized

• BSS: This section holds uninitialized data

• Heap: This is used to grow the linear address space of a process

• Stack: This contains all the local variables that get allocated

Text Data BSS Heap Stack

Text Data BSS Heap Stack

Text Data BSS Heap Stack

Process master and workers:

Details: Thread master and workers

Thread

Stack

worker 1
Thread
worker 2

Stack

Thread

worker 2

StackText Data BSS Heap Stack

Master

ALTERNATIVE: Child created by forking from master process

• In Linux, child processes are given the same resources as their parents (including the
address space). A child process does not duplicate the parent’s resources and instead
shares physical pages with its parent until one of them tries to write to a page. At that
time, a copy of the page is made and assigned to the writing process. (copy-on-write)

• Disadvantage: Little opportunity for collaboration among multiple child processes;
sharing of data via operating system is at a coarse level: share entire page of RAM
or nothing; Memory bus from cache to RAM becomes a bottleneck.

• With multi-core CPUs, worker threads collaborate to access the same memory at the
same time; fewer bottlenecks to RAM; collaborating threads is agoal of future work

Details: Thread local storage (TLS): An example

#include<stdio.h>
#include<pthread.h>

thread int gvar = 0; //int gvar = 0;
void *increase(void *)
{ gvar++;

printf(”Value in child thread: %d\n”, gvar);
}
int main(int argc, char* argv[])
{ pthreadt tid;

printf(”Value in main thread: %d\n”, gvar);
pthreadcreate(&tid, NULL, increase, NULL);
pthreadjoin(tid, NULL);
printf(”Value in main thread: %d\n”, gvar);
return 0;

}

Value in main thread: 0

Details: The usage of thread local storage (TLS)

• tData and tBSS segments

Thread worker 1 Thread worker 2

Text Data Heap tBSStData

Stack tData tBSS Stack tData tBSS

• statically initialized thread data does not support dynamic initialization

• “static thread int i = j;” is not correct when j is a variable

Details: Thread local storage needed in 3 cases

• static class members

class G4StateManager

{

· · ·

static G4StateManager* theStateManager;

}

• static variables

G4double G4Navigator::ComputeStep(· · ·

static G4int sNavCScalls=0;

· · ·

}

• global variables

G4Allocator< G4NavigationLevel> aNavigationLevelAllocator;

G4Allocator< G4NavigationLevelRep> aNavigLevelRepAllocator;

How to initialize a TLS variable dynamically

Fun(int j) Fun(int j)
{ {
static int i = j; static thread int* i NEW PTR = 0;

if (! i NEW PTR) {
i NEW PTR = new int;
*i NEW PTR = j;

}
int &i = *i NEW PTR ;

i++; i++;
return i; return i;

} }

The rule to add “ thread”

• Use a pointer whose name is new

• The initial value of the pointer is NULL

• Allocate space for the pointer only when the value of the pointer is
NULL. Then assign the value with the original right side

• Refer to the value of the pointer using the original name

• This guarantees each variable is initialized once and only once

Details: Phase I data model

• Data is initialized dynamically in the heap.

• Each thread initializes and holds its own copy of the data.

TLS Stack TLS Stack

Thread worker 1 Thread worker 2

Heap
Thread private data Thread private data

StackTLSStackTLS
Text (code) Static/Global variables

Heap

Details: Phase II data model

• Read-only data can be shared when processing one event.

• Master thread initializes read-only data and its own thread private data.

• Worker threads share read-only data and initialize only thread private
data.

Text (code) Static/Global variables

Heap

Stack TLS Stack

Heap

TLS

Thread worker 1 Thread worker 2

Shared data

Private data Private data

N02 and the fullCMS story

• N02 uses replicas. C++ objects associated with a geometry can not
be shared completely among all workers. For each physical volume,
logical volume or physics vector, those read-write data members should
be thread private. The same is true for physics tables and physics vectors.

• The size of C++ objects in Geant4 is usually small compared with the
page size (4 KB). Whenever even one data member of an instanceis
changed by a process, the operating system must replicate the entire page
containing that instance for that process. The likely outcome is that the
whole instance is replicated along with the page on which it resides. In
the end, almost all detector data is replicated for every process.

• Hence, copy-on-write is not efficient for Geant4.

N02 and the fullCMS story (continued)

• Copy-on-write reduces the memory consumption by half for fullCMS.

• It works here! Why?

• No replica, no sensitive detector. The geometry does not change after
initialization.

• Under such a circumstance, copy-on-write helps to share thegeometry
successfully.

• However, this benefit is limited. It does not also reduce the memory
consumption for physics processes.

• If a Geant4 C++ instance has some data members that are read-write,
copy-on-write becomes ineffective.

• Is this also a challenge for the thread-model of parallel Geant4? (See next
slide.)

Details: How do we share the data - 1

• An example — class G4PVReplica

• Suppose we have a detector which consists of lots of boxes. These boxes
are identical except for the position. They are arranged along a line. The
number of boxes is huge. An efficient way to describe this detector is by
a G4PVReplica instance.

4

1thread worker 1

thread worker 2

Physical volumes:

G4PVReplica instance

copyno: 0, 1, 2, 3, 4, 5, ...

0 1 2 3 4 5

1 2 3 4 5 . . .

0 1 2 3 4 5 . . .

0

. . .

Details: How do we share the data - 2

• In phase I multi-threaded Geant4, each thread holds its own copy of
instances. copyno is not a problem.

Thread 1

Copyno: 17
G4PVReplica

G4PVReplica

G4PVReplica

Copyno: 19
G4PVReplica

Copyno: 35
G4PVReplica

G4PVReplica

Copyno: 100

Copyno: 29 Copyno: 227

Thread 2

Details: How do we share the data - 3

• For the current implementation, all threads share replica instances while
copyno is thread-private. Here is our methodology.

Stack Stack

Heap

TLS

G4PVReplica G4PVReplica G4PVReplica
Instance ID: 0 Instance ID: 1 Instance ID: 2

Text (code) Static/Global variables

Heap

Copyno:

Instance ID: 0 1 2

17 100 29 35 19 227

Thread worker 1 Thread worker 2

0 1 2

TLS
copynoptrcopynoptr

Details: sharable classes with read-write members

Classes followed by read-write class members:

• G4LogicalVolume: fSolid, fSensitiveDetector

• G4VPhysicalVolume: frot, ftrans

• G4PVReplica: fcopyNo

• G4Region: fFastSimulationManager, fRegionalSteppingAction

• G4ParticleDefinition: theProcessManager

• G4Material: fIonisation, fSandiaTable

• G4ProductionCuts

• G4ProductionCutsTable

Details: The first step to share physics tables

• G4VEnergyLossProcess: In fullCMS, when QGSPEMV is used, the size
of the physics table of this process for particlee− is 27 MB.The process
grows from 84 MB to 111 MB. (111 - 84 = 27 MB)

• How does one share this physics table? (Next task for the nearfuture.)

Questions?

