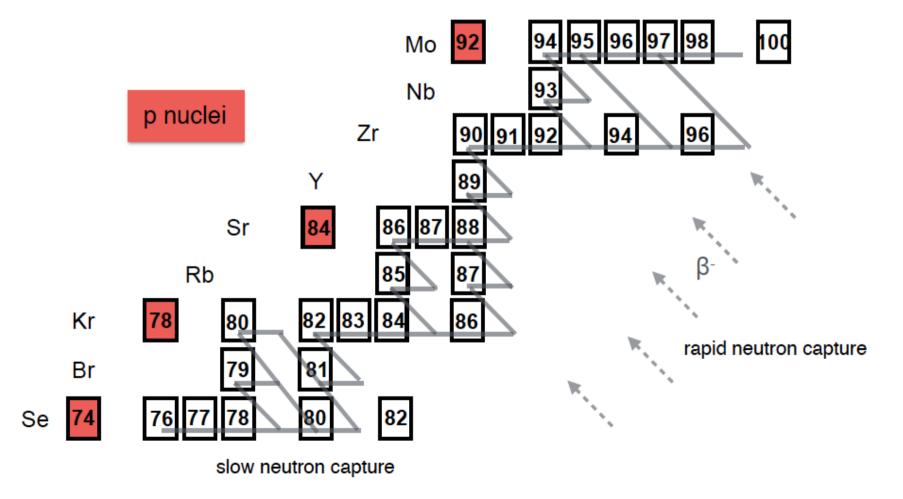
The ⁵⁹Cu(p,α) cross section and its implications for nucleosynthesis in core collapse supernovae

CERN-INTC-2015-036 ; INTC-P-441

C. Lederer¹, M. Aliotta¹, T. Davinson¹, D. Doherty2, A. Estrade¹, C. Griffin¹, T. Kemp¹, M. Kowalska³, S.J. Lonsdale¹, V. Margerin¹, A. Murphy¹, C. Weiss³, F. Wenander³, P.J. Woods¹, L. Zhang¹

¹University of Edinburgh, ²CEA-Saclay, ³CERN

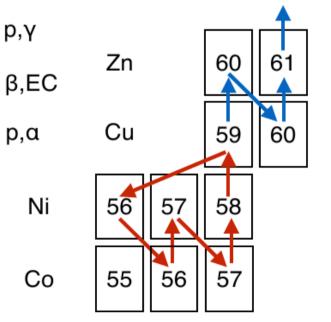

INTC open session, July 1st 2015, CERN

Formation of rare, proton-rich nuclei

- Some rare, heavy isotopes on the proton-rich side cannot be produced by neutron capture reactions ('p-nuclei')
- They are thought to be produced in supernova explositions by photodisintegration reactions, but stellar models fail to reproduce the high abundances of some lighter pnuclei

Formation of rare, proton-rich nuclei

Possible production of light p nuclei in the vp process: Synthesis of A<100 in proton-rich supernova ejecta by proton and α capture reactions. Neutrino interactions create free neutrons that can bridge bottlenecks via (n,p) reactions (Fröhlich et al, Phys. Rev. Lett. 96, 2006)

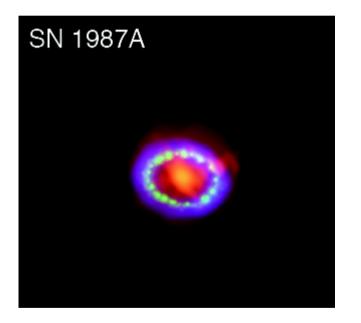

Formation of rare, proton-rich nuclei

- Possible production of light p nuclei in the vp process: Synthesis of A<100 in proton-rich supernova ejecta by proton and α capture reactions. Neutrino interactions create free neutrons that can bridge bottlenecks via (n,p) reactions (Fröhlich et al, Phys. Rev. Lett. 96, 2006)
- Recent study by Arcones et al.:

Competition between (p,α) and (p,γ) on ⁵⁹Cu sets temperature where heavy element formation starts (A. Arcones et al, ApJ 750, 2012)

 $^{\prime 59}\text{Cu}(p,\alpha)^{56}\text{Ni}$ is a key reaction that needs to be measured'

A. Arcones (private communication, 2014)C. Fröhlich (p-process workshop, Cyprus, 2015)

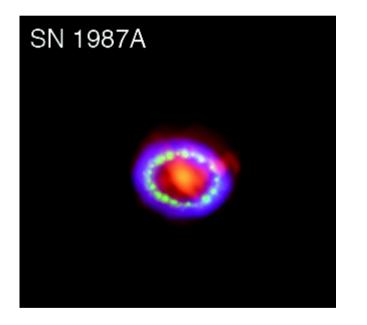


high temperature (above ~3 GK) low temperature

Formation of cosmic X-ray emitters

• Search for ⁵⁵Fe in SN 1987A by CHANDRA mission - no detection, inconsistent with models

Leising, ApJ 651, 1019 (2006)


 ⁵⁹Cu(p,α) reaction rate has high impact on abundances of the X ray emitters ⁵⁵Fe and ⁵⁹Ni produced in supernovae

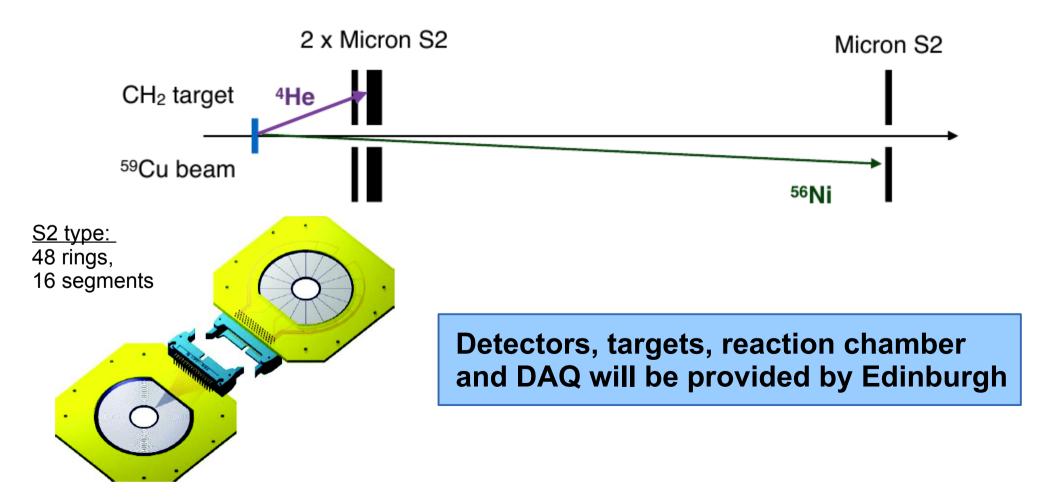
Jordan, Gupta and Meyer, Phys Rev C 68, 065801 (2003)

Formation of cosmic X-ray emitters

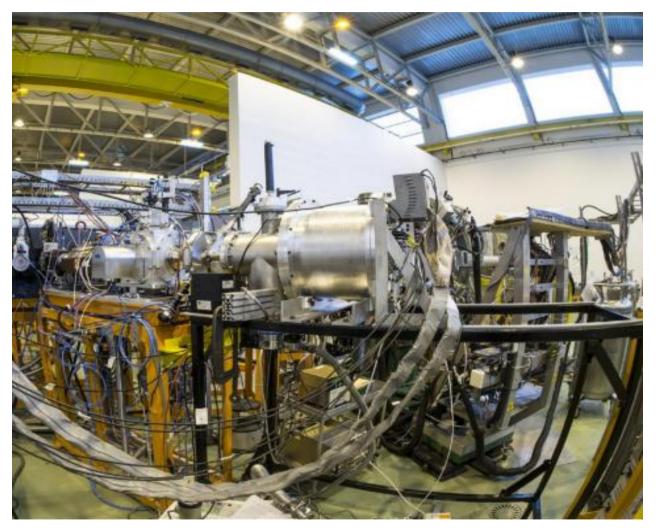
• Search for ⁵⁵Fe in SN 1987A by CHANDRA mission - no detection, inconsistent with models

Leising, ApJ 651, 1019 (2006)

 ⁵⁹Cu(p,α) reaction rate has high impact on abundances of the X ray emitters ⁵⁵Fe and ⁵⁹Ni produced in supernovae


Jordan, Gupta and Meyer, Phys Rev C 68, 065801 (2003)

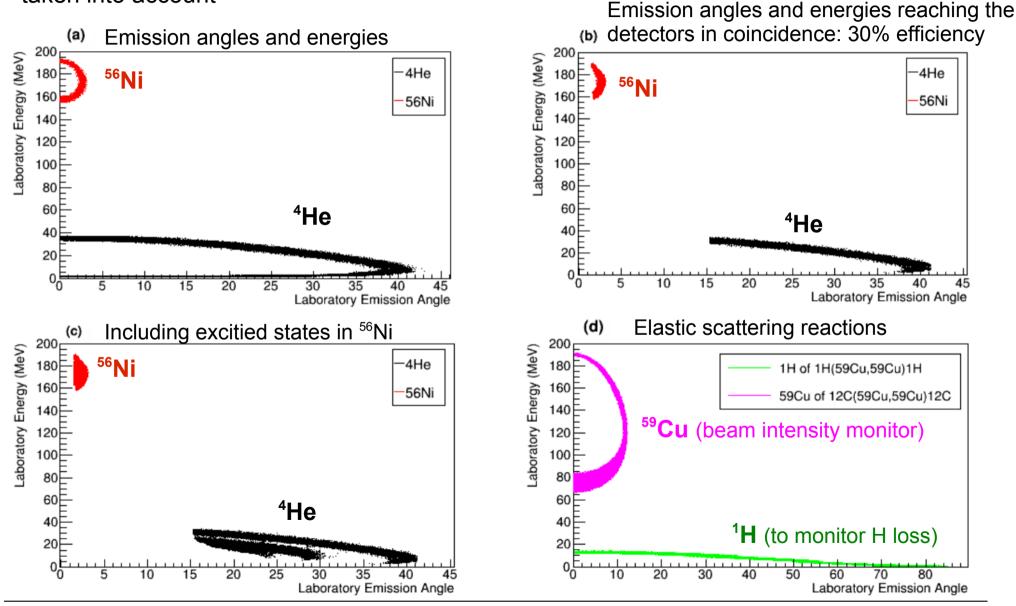
The new HIE-ISOLDE facility provides the unique opportunity to study the ⁵⁹Cu(p, α)⁵⁶Ni reaction <u>directly</u> at astrophysical energies


Proposed Experimental Setup

Detection of ⁴He and heavy recoil in coincidence (PRL 108, 242701 (2012)):

- ⁴He detection: Micron S2 type Silicon detectors arranged as Δ E-E telescope, 70 µm and 1000 µm thickness (angular coverage in lab 5-41 degrees)
- ⁵⁶Ni detection: S2 type detector, 70 μm thick (angular coverage in lab 1.5-5 degrees)

Reaction Chamber Dimension



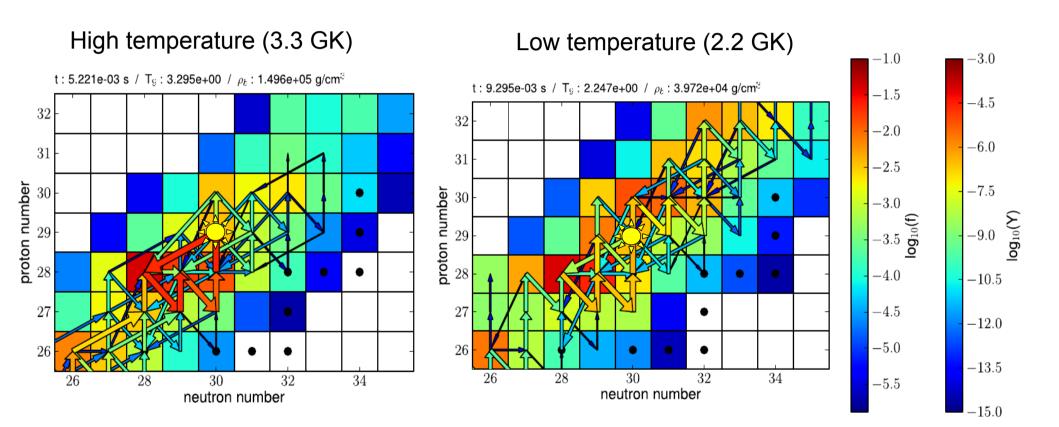
Slightly longer version of chamber used for ${}^{44}\text{Ti}(\alpha,p)$ experiment INTC-P-335

Approximate dimensions: Max. diameter: 40 cm Length: 1.2 m, extending to 2.5 m

Reaction Kinematics and Efficiency

Example: 212 MeV ⁵⁹Cu beam (laboratory energy), 2.4 mm FWHM; energy losses in target taken into account

Beam Time Request


- Beam energies from 3.6 5 MeV/u to cover stellar temperatures from 2.5 4 GK
- 2.1E5 ⁵⁹Cu ions per second on CH₂ target (at experimental station, yield: 7E6/μC)
- 30% efficiency for coincidences
- Reaction cross section as calculated by the NON-SMOKER code
- 2h of background runs for each beam energy (Background measurements with target of the same thickness containing Carbon (CD₂))

E _B (MeV)	Е _в (MeV/u)	E _{cm} (MeV)	Cross Section (mb)	Shifts	Counts	Statistical uncertainty (%)
295	5.0	4.6-5.0	2.0	2	290	6
277	4.7	4.3-4.7	1.3	3	300	6
259	4.4	4.0-4.4	0.7	4	220	7
236	4.0	3.6-4.0	0.3	5	105	10
212	3.6	3.2-3.6	0.1	5	45	15

Total request: 24 shifts (19 for (p,α) measurement, 1 for setting up in beam, 4 for beam energy changes)

EXTRA SLIDES

A. Arcones et al, ApJ 750, 2012

