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Plan of the talk.

1. Motivations for 335(n,a) cross-section measurement: complete the cross-section.

2. 335(n,0)3°Si cross-section measurement at EAR-1: results above 10 keV.

2.1. Sample characterization.

2.2. Cross section above 10 keV: resonance region.

3. 335(n,a) cross-section at EAR-1 below 10 keV.

3.1 Data affected by electronic noise and background.

4. Optimized setup and count rate estimation at EAR-2.
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Motivations for 33S(n,a)3°Si measurement

e Development of a setup for (n,a) cross-section measurements at
n_TOF:

o (n,y) and (n,f) up to that moment at n_TOF.

o The setup-2012 can be used in EAR-2 and improved.

e Astrophysics: origin of 3°S, it is an open question.

* Medical physics: 33S as cooperative target for BNCT.

e Nuclear structure: possible detection of excited states below 10 keV.
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33§(n,at) cross-section measurement with 1°B(n,a) as

reference at n_TOF EAR 1 during the campaign 2012.
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Sample coating at CERN and mass determination at CNA by RBS.

Rutherford backscattering technique with alpha beam at E_,=3.7 MeV, a good compromise
between enough resolution and pure Rutherford cross-section.
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We have been able to determine the mass of the samples with an uncertainty lower than 3%
thanks to the high accuracy in the determination of the number of incident alphas per stereo
radian using standard references. 4% of uncertainty.

The samples (8 cm in diameter) were scanned. Inhomogeneity lower than 3%.

Samplel Sample2 Sample3 Sample4 Sample5 Sample6 Sample7 Sample 8

Mass
(-107 at/b) 3.7940.15 3.49+0.14 2.59+0.10 2.15+0.09 2.77+0.11 3.65+0.15 3.76+0.15 3.58+0.14
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Experimental setup at n_TOF EAR1 campaign 2012.
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33S(Nn,a) at EAR-1: TOF & Amplitude

MGAS02_flux_h2_TA_MGAS
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- PSsignal introduces a big distortion at low energies.
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Corrections

In order to obtain the 33S(n,a)3%Si cross-section we correct by the transmission,
angular distribution of the 1°B(n,a)’Li and CM to LAB system.
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335(n,at)39Si: final result, 1°B(n,a) reference
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335(n,at)39Si: comparison to Wagemans et al.
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First conclusions to the experiment performed at

EAR-1

We have developed a setup for (n,a) cross-section measurement: the setup
may be improved.

We have finished the characterization of the mass of the samples.

We have finished the data analysis of the 33S(n,a) cross-section resolving the
resonance region from 10 to 300 keV.

We have found an agreement with Wagemans et al. with differences for few
resonances.

The main objectives of the proposal at EAR-1 have been achieved.

11
Javier Praena, Univers idad de Granada and CNA, Spain




33§(n,at) status below 10 keV: motivation for EAR-2
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Status of 335(n,a)3%Si experimental data.

e Auchampaugh et al PRC 12 1126-33 1975: (n,y) and (n,a) from 10 to 700 keV. TOF.
e Wagemans et al NPA 469 497-506, 1987: (n,a) from 10 keV to 1 MeV. TOF.
e Coddens et al NPA 469 480-96, 1987: (n,tot) from 10 keV to 2 MeV. TOF.

Wagemans et al
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335(n,at)3%Si at EAR-1: data below 10 keV?

Figure shows the cross-section obtained with 3 different samples during the

experiment at EAR-1.
It can be noticed the agreement in the resonance region meanwhile below 10 keV
the discrepancies are evident.
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335(n,at)39Si at EAR-1: thermal comparison.
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The extrapolation of our data (1/v) to thermal energy provides a value two order of magnitude higher
than experimental available data at thermal point.
This could be an indication that our data may be affected of noise and no adequate background

subtraction at energies below 10 keV.
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Setup and count rate estimation at EAR-2
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Test at EAR-2: improvements on the EAR-1 setup.

O The higher flux available at EAR-2 will allow a higher signal-to-background ratio.
U The improvements performed as a better grounded at EAR-2, better shielding in the
new Micromegas preamplifier will allow a low electronic noise ambient.

O In addition to this, there is no PS signal affecting our data at low energy as shown in the

figure (Neutron Energy & Amplitude at EAR-2).

O Figure shows a preliminary test with Micromegas detector calibration for sample

backing characterization at EAR-2.

U Signals will be well above the noise and background at EAR-2.

without cuts
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335(n,a)3%Si count rate at EAR-2 for 2e18

0 Because our data below 10 keV may be affected by electronic noise and background we use 3
existing evaluations that provided the largest and lowest value of the 33S(n,a) cross-section.
Neutron flux at EAR-2 and 3e-7 at/b sample.

O ICRU recommends that radiation dose delivered should be within 5% of the prescribed dose that

means <5% uncertainty at each step.

S$33(n,a) - 2e18 protons
3e-7at/barn sample - 10 bin/dec
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Summary of 33S(n,a) proposal at n_TOF-EAR2

e We have ready a setup for (n, o) cross-section measurement at n_TOF

*335(n,a)/1°B(n,at) at EAR-1 was measured in 2012 and we have finished the data analysis
extracting the cross-section above 10 keV and resolving the resonances.

*\We have collected data below 10 keV that can be affected by residual electronic noise, and
a non-optimized signal-to-background ratio. Extrapolation at thermal energy is an indication.

e We worked in a new electronics and optimized setup at EAR-2 for Micromegas.

* We propose to measure the 335(n,a) at EAR-2 to complete the cross-section with
motivations in nuclear astrophysics, medical physics and nuclear structure.

* The background and noise will be characterized for each 33S-detector (2), blank-detector
and empty-detector.

eWe request 2e18 protons.

e We could run in parasitic.
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Thank you

Javier Praena

M. Sabate-Gilarte, J. M. Quesada, I. Porras

And the n_TOF Collaboration
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Nuclear structure of the 31S: states below 10 keV.

Excited states of 34S near neutron separation energy
N. Nica and B. Singh, Nucl. Data Sheets 113, 1563-1733 (2012)
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Excited states of 3*S have been predicted for

neutron energies below 10 keV of the 33S(n,a).

No measured.

The major part of the levels were measured by Wiecher et al. NP A92 (1967) 175-192 with

inverse kinematics experiments: 39Si(a,n)33S and 3°Si(a,y)34S.

Moreover, anisotropy angular emission was measured with the inverse kinematic reaction

and it may be related to alpha-cluster formation and non-compound nucleus effect. 21
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Motivations: 36S nucleosynthesis |

Ar3d [Ar3s [Ar36 |Ar37 |Ar3s [Ar3o #S(n,a) MACS, kT=30 keV
32‘;‘5 ;2‘; :';:;5 :;]]J:i :;;ET ::S Auchampaugh et al (690+£170) mb
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832 1833 |83% I35 25 |83 Wagemans et al (227£20) mb
psm 0.75 431 B ED om SO05M
Pil [Pi2 (P33 [P P35 [P3s NPA 469 497 (1987) TOF
4T3 5 555
+
531 |53 Schatz et al 181 mb (175+£9) mb
2773 [o7Es PRC 51 379 (1995) Activation
Al33 |Al34
T P Woosley et al 224 mb
At. D. Nucl. D. Tab. 22 371 (1978) Model
ENDF/B-VII.1, USA 2011 (n,a) 30 1.903E2

 Reifarth et al [Astro.].528:573-581 (2000)] obtained the MACS of 34S(n,y) by the activation
technique showing that 34S could act as bottle-neck in this path.

e The origin of 3°S remains an open question.

 How did the authors calculate the MACS using the provided cross-section by TOF?

e What was the cross-section behavior below 10 keV? Notice En<10 keV is main contribution to
the cross-section for a Maxwellians kT=30 keV.

e In addition to this, the activation measurement, Schatz et al, used quasi maxwellian spectrum
at 25 keV generated by the Li7(p,n) reaction. For the correction of the spectrum and for the
extrapolation to 30 keV the assumption of the cross-section is mandatory.

e All authors claimed problems with the sample coating. Our RBS studies throwout 3 yeays
have demonstrated the stability of our samples.



Boron Neutron Capture Therapy
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336 in AB-NCT: dose rate B-10&S5-33 for a neutron

beam of 10 keV, therefore no resonance
contribution
total absorbed dose
5.5 I I I I I
5 40ppm B + 10ppt S (tumor w/B,w/S) ]
45 - |

10ppm B + 10ppt S (tumor w/S)

dose rate (Gy/min)

depth in phantom (cm)

The enhancement of the dose due to the presence of $-33 is very important allowing a lower
neutron flux, deeper tumours, and/or shorter time treatment 24




Clinical BNCT: the past is nuclear reactors.

Incident Epithermal
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Since 1994, at least 227 patients with glioblas-
roma multiforme, a form of brain cancer associated
with a poor prognosis, have undergone BNCT, in
many cases in combination with chemotherapy (such
as Bevacizumab or Temozolamide or with external
beam radiotherapy, EBRT). The inclusion of BNCT
in the therapeutic scheme produced a significant
increase of the overall survival rate after 30 months
from diagnosis (0% vs. 20% in no-BNCT vs. BNCT
group and 0% in no-BCNT vs. 30% in BNCT+EBRT
group). Moreover, from 1999, about 165 patients with
head and neck cancer were treated by BNCT with a
recognised effect from a clinical point of view (reduc-
tion of morbidity) and a recovery in overall survival
of 38% after 24 months from the date of diagnosis.

cells. Two drugs are nowadays available for

Ey, 1-4BMov(94%)

clinical investigations: BSH (mercaptoundecahy-
dro-closo-dodecaborate Na, ""B,, H,, SH) and BPA
(para-borophenylalanine Cy H,, "BNOy). Other

9B is the isotope widely used for this purpose, being
accumulated selectively into tumour cells by sev-

eral mechanisms. For example, borophenylalanine
Li (BPA) is selectively and preferentially accumulated

into tumour cells via the augmented metabolism of
amino acids in comparison to normal cells. The first

Table 10.1. Operative BNCT centres

Centre States Neutron source Neoplasm N° of treated
patients*
Helsinki University Central Hospital, | Europe FIR-1, VTT Technical Research | GB and HN 50 GM
Helsinki, Finland Centre, Espoo 2 AA
31 HN
University of Tsukuba, Tsukuba City, | Japan JRR-4, Japan Atomic Energy GB 20 GM
|baraki Agency, Tokai, Ibaraki 4 AA
University of Tokushima, Tokushima | Japan JRR-4 (Kyoto University Re- GB 23
search Reactor, Osaka)
Osaka Medical College and Kyoto Japan KURR GB, HN, CM 30 GBM
University Research Reactor, Kyoto 3 AA
University, Osaka and Kawasaki 7 Men
Medical School, Kurashiki 124 HN
Taipei Veterans General Hospital, Republic THOR, National Tsing Hua HN 10
Taipei, Taiwan of China University, Hsinchu, Taiwan
Instituto de Oncologia Angel H, Argentina | Bariloche Atomic Center CM and AT 7CM
Buenos Aires 3AT

* GM: glioblastoma multiforme; CM: cutaneous melanoma; AA: anaplastic astrocytoma; HN: head and neck cancer; Men: meningioma;

AT: anaplastic thyroid cancer




Clinical BNCT: nuclear reactor results.

100
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— Without BNCT —— YWithout BNCT

'S L 1 1 1l o L 1 ' \l L L 1

30 40 50 60 70 80 0 10 20 30 40 50 60 70
Follow-up/month Follow-up/month

Figure 10.2. Left side, Kaplan—Meier plot of the overall survival for
all newly diagnosed glioblastoma treated and not treated with BNCT
[from Kawabata et al. (2009). Survival benefit from boron neutron
capture therapy for the newly diagnosed glioblastoma patients.
Appl. Radiat. Isot. 67: 515-18]. Right side, Kaplan—Meier survival
plots of patients with recurrent head and neck cancer treated with
and without BNCT [from Kato et al. (2009). Effectiveness of boron
neutron capture therapy for recurrent head and neck malignancies.
Appl. Radiat. Isot. 67: S37-42].
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Motivations: 23S as cooperative target in NCT

Incident Epithermal
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Radiotherapy and Oncology no 72(2004) pp. 83-84

e Past: thermal neutron beams from nuclear reactor.
e Future: epithermal neutron beams from accelerator-based neutron source.

e Neutron production, Li(p,n), solid and liquid lithium targets, high current low
energy accelerators such RFQ and new IBA electrostatic accelerators,
nanotechnology for boron carriers, dosimetry studies, treatment planning.

e Experimental treatments. Finland. http://clinicaltrials.gov/show/NCT00114790
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http://clinicaltrials.gov/show/NCT00114790

Clinical BNCT: the present/future is accelerators.

- Epithermal (around 10 keV) neutron beams are the more adequate to have enough
penetration in the body but 2-3 centimeters of tissue for moderation are necessary for
10B(n,a) reaction, a lot of neutrons are lost (origin of the S-33 idea).

- At present the neutron beam shaping must be based on the IAEA figure of merit for
shallow and deep tumours even the “new” AB-BNCT, it should change very soon.

Accelerator—based epithermal neutron sources

thermal (E<0.5eV), epithermal (0.5eV<E  <10keV) 1200
and fast (E_ > 10keV) neutrons, [AEA recommends T ey
the following fluence rates and absorbed dose rates 71000 P Moder. (25 em)
for shallow and deep tumours. 5
S soo|  L(enyee
Shallow tumours = - g.-olriiue\a{fs )
o e er, cm
(Dth = 1{)9 Cm'25'1 g, 600 Pb Reflector [ H b
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2 I ]
(Dthli (Dtﬂt "‘—} 0-9 > § ] i
: 400 ; .
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Motivations: 33S as cooperative target in NCT

Incident Epithermal 3 , , , , ,
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e 5-33 concentration of the order of mg/g based on the addition of cystine to the culture medium, as PW
Gout et al., , Increased cystine uptake capability associated with malignant progression of Nb2 lymphoma
cells, Leukemia 11, 1329-1337 (1997). Selectivity Coderre et al., J. Nucl. Med. 27, 1157 (1986).

e The presence 23S enhances the dose in the first centimetres in tissue: motivation EAR-1.

* For instance, NECK-HEAD tumours grow to the skin so S-33 may be very useful. Also tumours as lung
tumours have not a treatment solution, therefore S-BNCT may be an interesting research line.

* 1. Porras Phys. Med. Biol. 53 (2008), J. Praena et al, ARI, 88 (2014) 203.



10B(n,a) used as reference: TOF & Amplitude

Separation between alphas and ’Li nuclei.

We calculate the alphas lying in the Li peak by means of a Gaussian fit of the
amplitude histogram at different energy ranges.

Monte Carlo simulations of the energy deposition.
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335(n,at)39Si evaluations

Cross Section (barnsl

EHDF Regquest 49176, 2014-S%ep-24,.15:38:55
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335(n,at)39Si evaluations
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Positions black resonances

W W GnGe GeNa Al
Cd Ag  MolMé/ Bi Bi Al S

107 07 7 100 10 10 10 18 30 10°
neutron energy (eV) Proposed neutron filters

material black resonance EAR1: thickness EAR2: thicknes

(eV) (cm) (cm)
C _ - -
Cd thermal cut-off 0.05 0.05
W 4,19, 184 0.08 =>0.8
Ag 5.2 0.05 0.05
Mo 45 0.1 =>1.0
Co 132 0.025 0.025
Bi 800, 2300, y-flash > 1.0 >5.0
Na 3000 -
Al 5900, 30000 8.0 > 8.0
S 112000 =8.0 16.0
Pb ~-flash 1.0and 2.0 1.0and 2.0
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