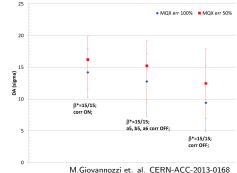
Measurement of nonlinear errors in experimental insertions


Ewen H. Maclean

Many thanks to the Optics Measurement and Corrections team and M. Giovannozzi

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


NL-errors in experimental IRs significantly impact dynamic aperture

- $\sim 5 \sigma$ effect for HI -I HC
- Dedicated correctors provided in IRs:

```
a_3, b_3, a_4, b_4, b_6 in LHC
```

```
+ a_5, b_5, a_6 in HL-LHC
```


Optimal corrections calculated locally from magnetic model:

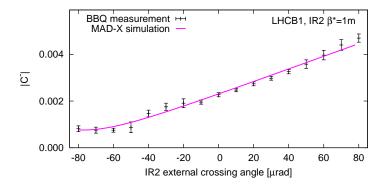
Minimization of selected RDTs over IR

O.Bruning, S.Fartoukh, M.Giovannozzi, T.Risselada. LHC Project Note 349

 Minimization of transfer map coefficients left and right of IP R.Tomás, M.Giovannozzi, R.de Maria. PRSTAB, 12,011002(2009)

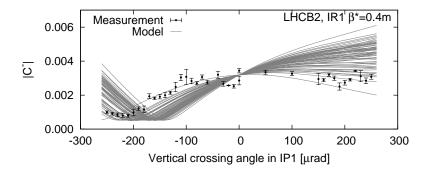
Requires an accurate magnetic model!

Existing method for beam-based study uses feed-down to $Q_{X,Y}$ & $|C^-|$


First measurement and correction of nonlinear errors in the experimental insertions of the CERN Large Hadron Collider E.H.Maclean, R.Tomás, M.Giovannozzi, THB.Persson. Accepted PRSTAB

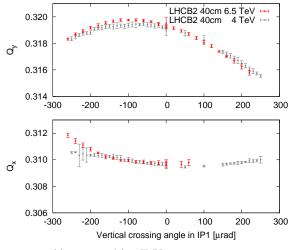
- Closed orbit bumps through IR varied
- BBQ measurements compared to MAD predictions

Feed-down order	1 st order		2 nd order		3 rd order		$\overset{4^{\text{th}} \text{ order}}{}$	
Multipole	\mathbf{b}_3	a 3	\mathbf{b}_4	a ₄	\mathbf{b}_5	a_5	\mathbf{b}_6	
Horizontal displacement Vertical displacement	$\Delta Q \\ \Delta C$	$\Delta C \\ \Delta Q$	$\Delta Q \\ \Delta Q$	$\Delta C \\ \Delta C$	$\Delta Q \\ \Delta C$	$\Delta C \\ \Delta Q$	$\Delta Q \\ \Delta Q$	


This method has been used in MD during Run 1 & 2015 MD2

• Validated several aspects of the magnetic model in 2012:

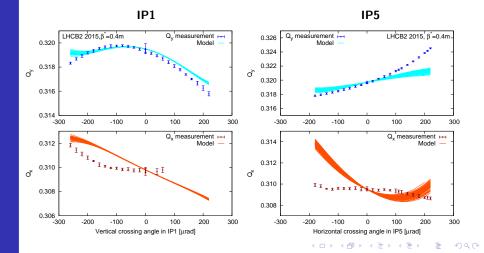
■ b₃ components in IR2 at 3.5 TeV in 2011


• Validated several aspects of the magnetic model in 2012:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• b_3 & a_4 components in IR1 at 4 TeV in 2012

- 2 crossing angle scans performed in 2015, $\approx 1 \, {\rm hour}$ total beam time Measurements performed by E.H.Maclean, R. Tomás and P. Skowronski
- IP1-V, IP5-H, but no useful coupling data from BBQ

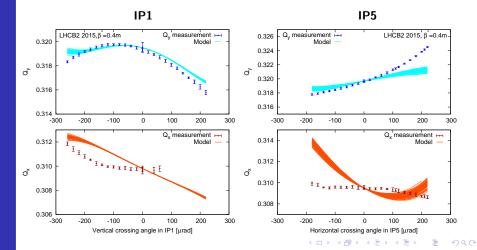

▲ 同 ▶ → 三 ▶

- ∢ ⊒ →

э

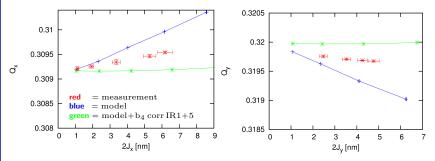
Show comparable errors with 4 TeV measurements

- Feed-down scans in IR1 & IR5 show large discrepancies in 2012 & 2015
- **IR1:** a_3 + higher orders (b_4 ? a_5 ? b_6 ?)
- **IR5:** $b_3 + b_4 + \text{higher orders} (b_5? \ b_6?)$
- Feed-down to $|C^-|$ never measured for IR5


- Cannot rely only on magnetic measurements for NL corrections
- Many observed discrepancies give smaller feed-down than predictions, but...
 - \rightarrow Doesn't imply smaller errors \rightarrow could be cancellations
 - \rightarrow minimizing feed-down doesn't necessarily correct RDTs or DA
- Require beam-based methods to understand errors
 - \rightarrow large number of possible combinations of sources
 - \rightarrow difficult to measure high order multipoles
- Basic 'feed-down with BBQ' type measurements faces a number of limitations in determining the sources

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- → AC-dipole measurements improve reliability of $Q_{x,y}$ & $|C^-|$ measurements, may give local information
- \rightarrow combination with additional observables

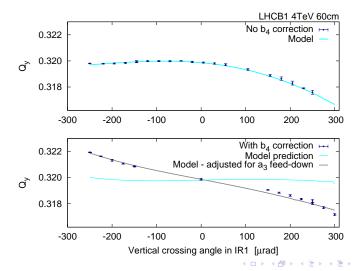

Combining amplitude detuning and feed-down

- IR5: shows small octupole feed-down wrt model (quadratic change of tune with X'ing angle)
- IR1: quadratic variation of Q_y with X'ing angle agrees with model
- IR1: feed-down to Q_x indicates some combination of b_4 , a_5 , or b_6

Combining amplitude detuning and feed-down

- Detuning dominated by IR1&5, expect ~equal contributions
- Don't expect cancelling sources of b₄ feed-down to also cancel amp-det'
- Method for amplitude detuning via AC-dipole developed in Run 1 S.White, R.Tomás, E.H.Maclean. PRSTAB,16,071002(2013)
- \blacksquare Amplitude detuning was measured @ $6.5\,{\rm TeV}$ in 40 ${\rm cm}$ commissioning MD

Amplitude detuning measurements by A.Langner, comparison to simulation by S.Monig


Fairly confident of \sim nominal b_4 errors in IR1, with \sim 0 in IR5

∃ 990

- 4 同 6 4 日 6 4 日 6

Knowing errors still doesn't guarantee ability to correct...

- \blacksquare IR1 b_4 correction @ $4\,{\rm TeV},\,60\,{\rm cm}$ worked for LHCB2
- but generated large feed-down to a₃ in LHCB1 only
- can't be compensated with common local correctors

596

э

What about *b*₆?

- Feed-down + 2nd order detuning
 - \rightarrow small tune shifts
- Long term DA M.Giovannozzi PRSTAB,15,024001(2012)
 - \rightarrow Beams blown up with ADT, DA studied for various b_6 corrector settings
 - \rightarrow but what is being corrected? (Single IP squeeze?)

AC-dipole: RDTs & short term dynamic aperture

- \rightarrow Difficult lines to observe (use working point to enhance resonances)
- → DA measurement with AC-dipole is a very new topic S.Monig et. al. Short term dynamic aperture with AC dipoles. CERN-ACC-NOTE-2015-0027

Lifetime optimization in collision

- ightarrow Used at RHIC (4 % Lumi increase from $b_5 + b_6$) W.Fischer, IPAC'10, THPE099
- \rightarrow MD proposal by Y.Papaphilippou (https://md-coord.web.cern.ch/app/#/md_requests/449)
- → What is being corrected?? Magnet errors? Beam-beam? MO? Lower-orders? Which IR?

None of these are quick or straightforward methods.

Conclusions

- Require beam-based method to complement magnetic measurements
- If we can get data feed-down studies provide data on status of nonlinear errors in experimental insertions
- Think we understand b_3 in IR2 & $b_3+a_4+b_4$ in IR1 & b_4 in IR5
- Clear discrepancies in a₃ IR1 & b₃ IR5, hints for higher orders
- a_3, a_4, a_5 in IR5 never successfully measured
- Benefits to combining feed-down studies with additional observables

Exploring ways to overcome limitations of feed-down methods

Some reasons for optimism, but a lot of challenges.

Looking forwards to commissioning next year!