Optics-measurement-based BPM calibration with Ballistic optics

LHC MD233 "Balistic optics in the triplets" 7-November-2015
A.Garcia-Tabares Valdivieso, L.Malina, R.Tomas, P.Skowronski MD participants: M. Giovannozzi, M. Solfaroli Camillocci, J.Wenninger

November 20, 2015
(1) Introduction

- State-of-the-art
- Motivation
- MD description
(2) Analysis
- Model analysis
- Measurements
(3) Results
(4) Conclusions and outlook

State-of-the-art

β function is being computed using two different methods:

- N-BPM phase advance method.
- Transversal oscillations amplitude (Amplitude method).

Amplitude method

- The amplitude method depends on the BPM calibration $x_{\text {measured }}=C \cdot x_{\text {correct }}$ where C is a calibration factor.
- Since the β function is related to the position through the equation $x=\sqrt{\beta \cdot \epsilon}$, the $\beta_{\text {measured }}=\mathrm{C}^{2} \cdot \beta_{\text {correct }}$.

Calibration procedure

- The calibration factor C^{2} has been computed using the $\beta_{\text {correct }}$ coming from a fit of the β from phase.

Motivation

MD motivation

The goals of the MD are:

- To improve the knowledge on the BPM alignment in the triplet.
- To disentangle better optics errors from the triplets and from Q4.

Analysis motivation

- Challenging β^{*} control in HL-LHC.

Motivation

MD motivation

The goals of the MD are:

- To improve the knowledge on the BPM alignment in the triplet.
- To disentangle better optics errors from the triplets and from Q4.

Analysis motivation

- Challenging β^{*} control in HL-LHC.
- Here we compute C^{2} using β from phase in dedicated optics (ballistic).

MD description

MD description

- Triplet is switched off.
- Optics measured with AC-dipole.

MD specifications

- Beam: both
- Beam energies:
- Injection
- Flat top
- Ramp
- Time required (hours): 8 hours
- Beam: Beam 2
- Beam energies:
- Injection
- Time (hours) : 4 hours

Analysis of the parabolic behavior of β from model at the IRs

Measurements IR1 I: Horizontal

Measurements IR1 II: Vertical

Measurements IR5 I: Horizontal

Measurements IR5 II: Vertical

Calibration ratios I: IR1

β phase fit $\rightarrow \beta(s)=\beta^{*}+\frac{(s-\omega)^{2}}{\beta^{*}}$ at the current BPMs positions.
β ratio $=\frac{\beta \text { phasefit }}{\beta \text { amplitude }}$

Calibration ratios I: IR5

Error calibration ratios

Conclusions and outlook

Conclusions

- C^{2} can be measured with an accuracy smaller than 1.2%.
- C is acquired with an error lower than 0.6%.

Outlook

- Study of calibration dependence with beam orbit in the BPMs
- Hopefully complete set of data (both beams 6.5TeV) in 2016

