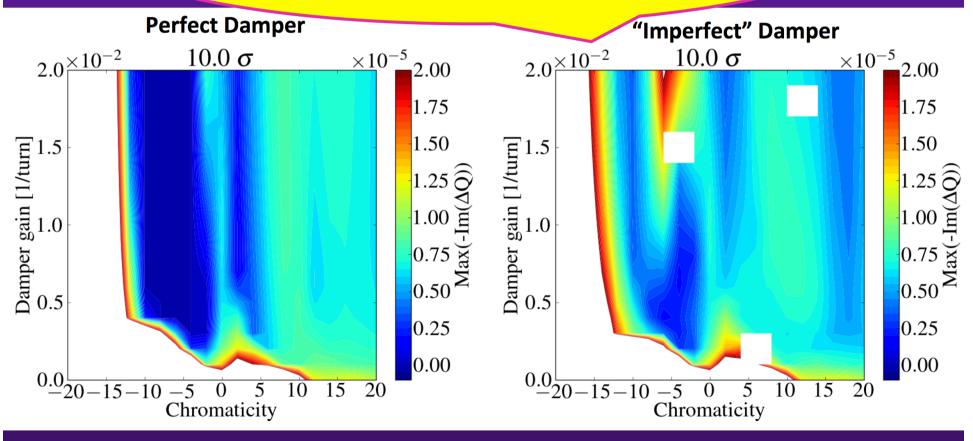

# MD RESULTS: IMPEDANCE

E. Métral, B. Salvant, N. Biancacci, L. Carver et al.

Context: Prediction for HL-LHC at  $\beta^* = 15$  cm (NicoloB et al.)




#### OVERVIEW PLOTS OF LHC STABILITY STUDIES AT 6.5 TEV (LeeC & NicoloB et al.)



### PAST (2012) WORK ON DAMPER (XavierB et al.)

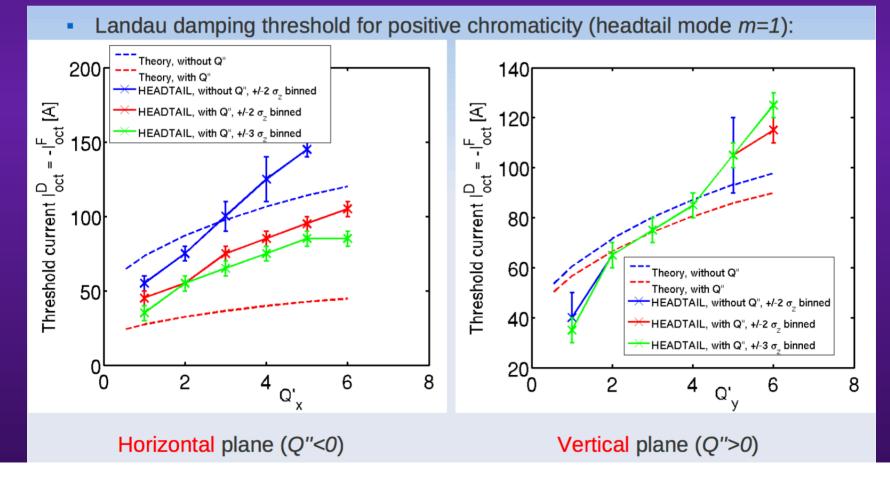
More "realistic" cases studied (finite resolution > ~ 1 µm; effect of modulation of measured BPM signal around the main RF frequency, used to enhance the sensitivity => measured position slightly differs from average position in presence of head-tail motion)



=> Would like to scan the ADT gain in the future

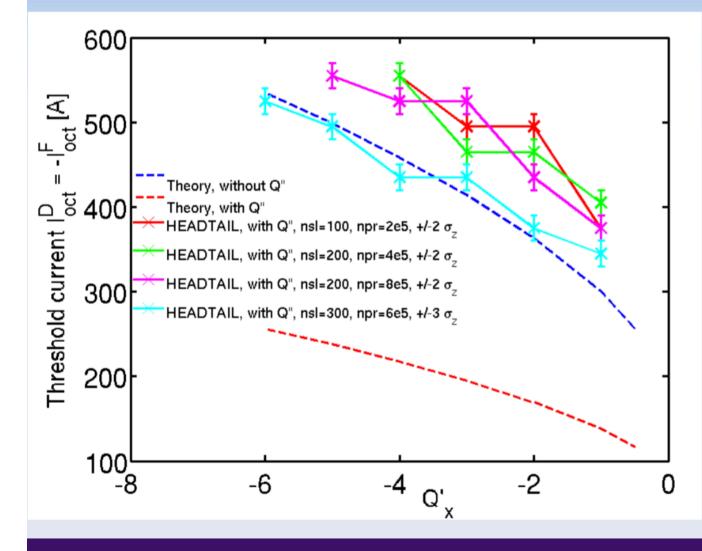
# PAST (2012) WORK ON Q" (1/4) (NicolasM et al.)

 Formula for the 2<sup>nd</sup> order chromaticity (Eq. (158) of LHC Project Report 501 by StephaneF and OliverB:


http://cdsweb.cern.ch/record/522049/files/lhc-project-report-501.pdf)

$$Q''_{x,y} = \pm \frac{1}{4\pi} \int ds \,\beta_{x,y} \,D_x^2 \,K_3^+$$

- Q<sub>x</sub>" = 36000 for 450 A in the (D) octupoles at 4 TeV
- Q<sub>v</sub>" = + 15000 for 450 A in the (D) octupoles at 4 TeV


### PAST (2012) WORK ON Q" (2/4) (NicolasM et al.)

 HEADTAIL simulations for a single-bunch at 4 TeV/c, with tight collimator settings, rms bunch length of 9 cm, dipolar impedances only, linear bucket, ultimate intensity 1.7e11 p/bunch, transverse emittances (rms. norm.) of 2 microm

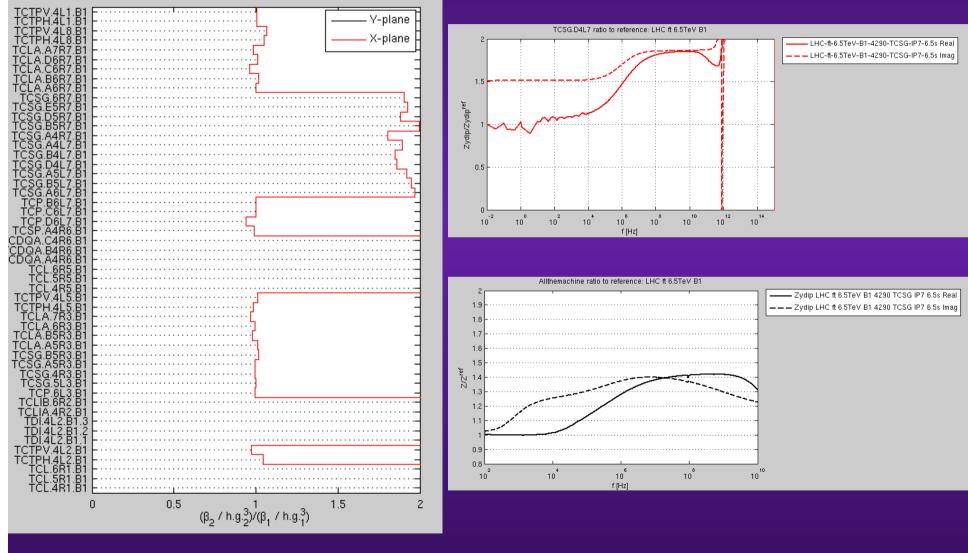


# PAST (2012) WORK ON Q" (3/4) (NicolasM et al.)

• Landau damping threshold for  $Q'_x < 0$ , in horizontal (headtail mode m=0):



→ Higher discrepancy for  $Q'_x < 0$ with m=0, than for  $Q'_x > 0$  with m=1. → Number of slices and macroparticles has a rather small impact, but number of  $\sigma_z$  binned slightly


more significant.

# PAST (2012) WORK ON Q" (4/4) (NicolasM et al.)

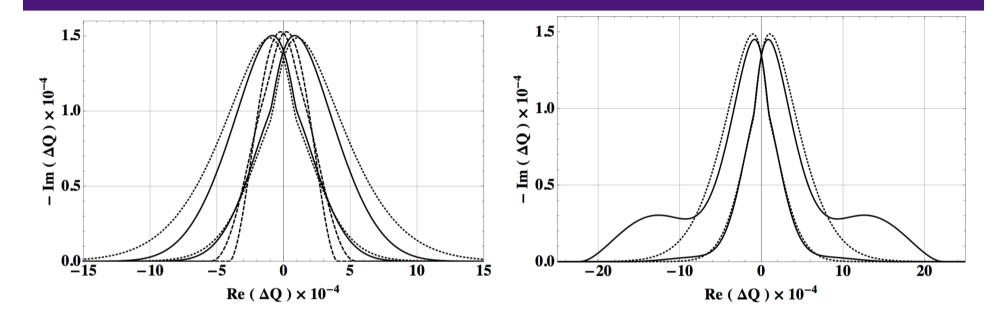
 Due to these first results, we continued to compare to the (simpler) case without Q" but this should be re-studied => Ongoing

#### IMPEDANCE MODEL WITH TCSGs at 8 and 6.5 $\sigma$

Reference to LHC ft 6.5TeV B1



# **PAST (2012) RESULTS (1/2)**


#### Operational results from 2012 (4 TeV)

- ~ 1.6E11 p/b within ~ 2.2 µm reached with Q' ~ 15, ~ max. (550 A) octupoles and ~ max. ADT gain (50-turn damping time)
- => Why large loct (~ 5 times more than predicted)? And high Q'?

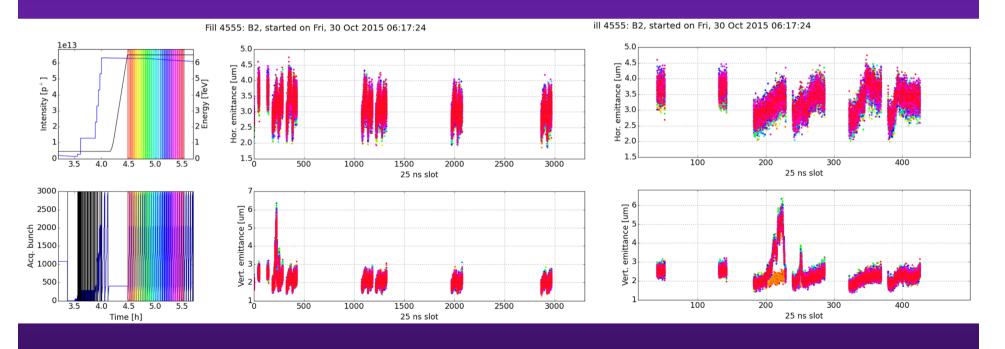
#### MD results with 1 (B2) full (1380 bunches) 50 ns beam

| Fill,<br>date<br>and<br>time | inst.<br>rank     | $_{\rm and}^{\rm energy} \\ \beta^*_{\rm IP1,5}$ | beam<br>and<br>plane | $n_b$ | $Q_x$             | $Q_y$                | $4\sigma_t$ [ns]  | RF<br>volt.<br>[MV] | $Q'_x$          | $Q_y'$                                       | Int. $[10^{11} \text{ p}^+/\text{b}]$           | $arepsilon_x \ [\mu m \ .rad]$ | $arepsilon_y\ [\mu { m m}\ .{ m rad}]$        | $	au_x^d$ [tr.] | $	au_y^d$ [tr.] | foc.<br>oct.<br>cur.<br>[A] | coll.<br>settings        |
|------------------------------|-------------------|--------------------------------------------------|----------------------|-------|-------------------|----------------------|-------------------|---------------------|-----------------|----------------------------------------------|-------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------|-----------------|-----------------------------|--------------------------|
| 2744<br>19/06/12<br>23:48    | 1 <sup>st</sup>   | 4 TeV/c<br>11m                                   | B2V                  | 1380  | $64.28 \pm 0.001$ | $59.31 \pm 0.001$    | $1.21 \pm 3\%$    | 12                  | 8.7<br>±2       | $3.3 \pm 2$                                  | $\begin{array}{c} 1.5 \\ \pm 0.2 \end{array}$   | $2.35 \pm 0.45$                | $2.35 \pm 0.45$                               | 100             | 200             | -110                        | physics<br>except<br>TCL |
| 2771<br>23/06/12<br>19:06    | 1 <sup>st</sup>   | 4 TeV/c<br>0.6m                                  | B2V                  | 1380  | $64.31 \pm 0.003$ | $59.32 \\ \pm 0.003$ | $1.24 \pm 5\%$    | 12                  | $9.3 \\ \pm 2$  | $1.9 \pm 2$                                  | $\begin{array}{c} 1.43 \\ \pm 0.21 \end{array}$ | $2.3 \pm 0.5$                  | $2.3 \pm 0.5$                                 | 50              | 100             | -19                         | physics<br>except<br>TCL |
| 2771<br>23/06/12<br>20:21    | 2 <sup>nd</sup>   | 4 TeV/c 0.6m                                     | B2V                  | 1380  | $64.31 \pm 0.003$ | $59.32 \\ \pm 0.003$ | $1.26 \\ \pm 5\%$ | 12                  | $^{-3}_{\pm 2}$ | $-7 \pm 2$                                   | $\begin{array}{c} 1.4 \\ \pm 0.2 \end{array}$   | $2.3 \pm 0.5$                  | $\begin{array}{c} 2.3 \\ \pm 0.5 \end{array}$ | 50              | 100             | -235                        | physics<br>except<br>TCL |
| $2771 \\ 23/06/12 \\ 20:49$  | 3 <sup>rd</sup>   | 4 TeV/c 0.6m                                     | B2H                  | 1380  | $64.31 \pm 0.003$ | $59.32 \\ \pm 0.003$ | $1.26 \\ \pm 5\%$ | 12                  | $5.9 \\ \pm 2$  | $\begin{array}{c} -0.9 \\ \pm 2 \end{array}$ | $\begin{array}{c} 1.4 \\ \pm 0.2 \end{array}$   | $2.3 \pm 0.5$                  | $2.3 \pm 0.5$                                 | 50              | 100             | -58                         | physics<br>except<br>TCL |
| $2771 \\ 23/06/12 \\ 21:55$  | $4^{\mathrm{th}}$ | 4 TeV/c<br>0.6m                                  | B2V                  | 1380  | $64.31 \pm 0.003$ | $59.32 \\ \pm 0.003$ | $1.26 \\ \pm 5\%$ | 12                  | $2.3 \\ \pm 2$  | $\begin{array}{c} 0.8 \\ \pm 2 \end{array}$  | $\begin{array}{c} 1.37 \\ \pm 0.2 \end{array}$  | $2.3 \pm 0.5$                  | $2.3 \pm 0.5$                                 | Inf             | Inf             | -402                        | physics<br>except<br>TCL |

# **PAST (2012) RESULTS (2/2)**

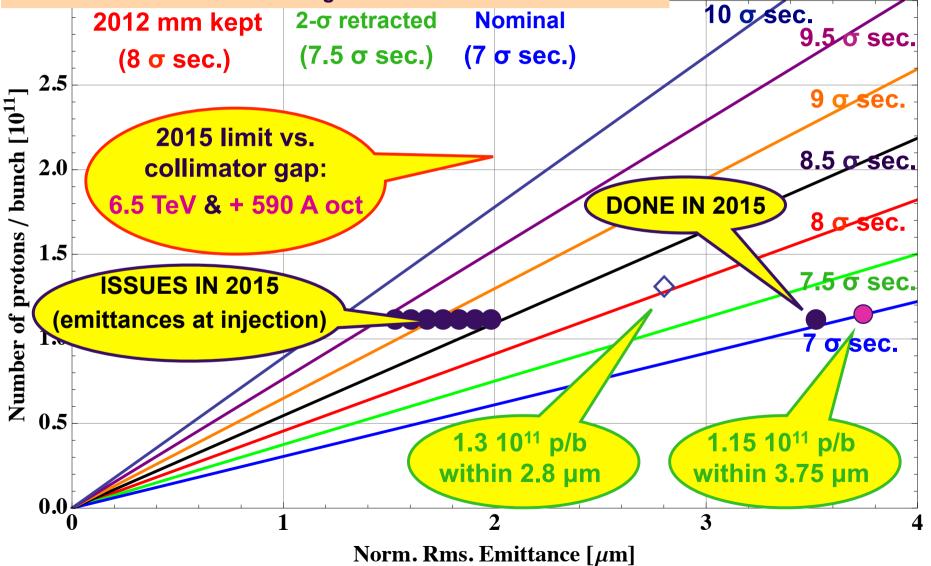


**Fig. 4.8.** Stability diagrams (for both positive and negative detunings  $a_0$ ) for the LHC at top energy (7 TeV) with maximum available octupole strength: (Left) for the 2<sup>nd</sup> order (dashed curves), the 15<sup>th</sup> order (full curves), and the Gaussian (dotted curves) distribution; (Right) for the Gaussian distribution (dotted curve) and a distribution with more populated tails than the Gaussian (full curve).


#### **OPERATIONAL RESULTS FROM 2015**

- ◆ 6.5 TeV
  - By the end of the 2015 run, we were operating with 2244b, Q' ~ 15 / 15, Joct ~ 550 A and ADT damping time ~ 100 turns
  - Stable beams could be reached without instabilities for intensities of ~ 1.15E11 within ~ 3.5 μm
- Injection
  - Scrubbing runs (until 08/08/15) => Settings at injection
  - In addition, we recommended to lower the vertical tune on 19/08/15 (LMC#231) => Optimization made + nice simulations revealed beneficial effect. More space for Q' increase, etc.
  - Some issues observed with ADT (witness bunches blow-up,...)
  - Some observations of larger coupling strength (C<sup>-</sup>) or closer tune distance when instability issues at injection... To be followed up

#### **TEST WITH BCMS BEAM**


- Before the test: stable 2244 b beam
- After the test: stable 2244 b beam
- BCMS test (with same parameters as for operational beam with 2244 b) on Fill #4555 (on 30/10/15) with ~ 600 b, ~ 1.1E11 within ~ 1.5
   2 µm: Instabilities seen in B1H at beginning of ramp, B2V during

squeeze and B2H during stable beams



# **PREDICTIONS** before 2015... with partial past knowledge...

- For LOF > 0 (would be better for LOF < 0)
- ~ maximum ADT gain (50 turns) + high chromaticity (~ + 15 units)
- For constant collimators setting in mm

