

HEARS/ANSCERN

Beam lines at GERNzincudins 9

Beam lines for Schools, 12 septem ber 2015

Waugatigion / EN-ME

CERN
 EN Engineering Department

THE CERN ACCELERATOR COMPLEX WITH ITS EXPERIMENTAL AREAS

 CMS

FIXED TARGET
 VS
 COLLIDERS

$$
\begin{aligned}
& E_{c m s} \sim \int E_{\text {beam }} \\
& \text { e.g.: SPS: } 27 \mathrm{GeV}
\end{aligned}
$$

Many particle types:
e.g. $p, \pi, K, e, \mu, .$.
$E_{c m s} \sim E_{\text {beam }}$
e.g.: LHC: 13000 GeV

One particle type:
Protons (evtl ions)

Precision experiments,
Rare events

Discovery machines, e.g. Higgs

The LINACs: where it all starts.....

Linac2: includes the proton source
Built from 1973 to 1978
Total length: $\sim 33 \mathrm{~m}+80 \mathrm{~m}$ transfer line 50 MeV kinetic energy
${ }^{\sim} 170 \mathrm{~mA}$ protons

Linac3: includes the heavy ions source
Commissioned in 1994
Total length: ~12 m + short transfer line
4.2 MeV/N
$25 \mu \mathrm{~A} \mathrm{~Pb}^{54+}$

The PS Booster (PSB)

The PS Booster was built in 1972, Its circumference is ~ 157 meters (1/4 x PS).

The PSB receives the beam from Linac2 and accelerates it to $1.4 \mathrm{GeV} / \mathrm{c}$ for ejection towards ISOLDE or into the PS. It consists of 4 parallel rings, which can be operated rather independently, e.g. 1 ring for the East Area and 1 for nTOF. The PSB cycle is 1.2 seconds. The intensity spans 4 orders of magnitude, up to 3.210^{13}

THE PROTON SYNCHROTRON (PS)

The Proton Synchrotron is the oldest machine at CERN, commissioned in 1959 (!) ,but it is still functioning well and even well beyond its initial specifications!

Contrary to the SPS, the PS has no separate quadrupoles, but it has shaped pole faces and special coils in the main magnet units to provide the focusing. In total there are 100 main magnets and as many straight sections with special function equipment

The PS has a circumference of ~ 628 meters and is capable to accelerate protons up to $26 \mathrm{GeV} / \mathrm{c}$.

It operates with a basic period of 1.2 seconds.
The PS servse many users, including the SPS North Area, CNGS, the LHC, the AD, the East Area, nTOF and machine studies. The proton intensities per cycle vary from $10^{11} \mathrm{ppp}$ for DIRAC to $2-310^{13} \mathrm{ppp}$ for CNGS.

THE SUPER PROTON SYNCHROTRON (SPS)

The Super Proton Synchrotron is the last accelerator in the injector chain before the LHC. Its commissioning started in 1976, but the North Experimental Area started only in 1978. Originally designed for fixed target proton operation at $300 \mathrm{GeV} / \mathrm{c}$, it has operated up to $450 \mathrm{GeV} / \mathrm{c}$ for fixed target physics (and LHC filling), but also as a prestigious p-pbar collider ($270 \mathrm{GeV} / \mathrm{c}$) and as injector for LEP. It has also served the heavy ion physics programs with various ion species, up to Pb .

The circumference of the SPS is 11 times the PS: about 6.9 km ($\mathrm{t}_{\mathrm{rev}}=23 \mu \mathrm{sec}$). The protons are injected at $14 \mathrm{GeV} / \mathrm{c}$ and (nowadays) accelerated to $400 \mathrm{GeV} / \mathrm{c}$.

NORTH AREA BEAM LINES

(Schematic view!)

THE M2 MUON BEAM

FOR COMPASS / NA58

EHN2: COMPASS

NA62 Beam \& Detectors

SPS primary p: 400 GeV/c

 Unsepared beam:- $75 \mathrm{GeV} / \mathrm{c}$
- 750 MHz
$\cdot \pi / K / p\left(\sim 6 \% K^{+}\right)$

Measure Kaon:
-Time
-Angles

- Momentum

Beam Line + Infra.

CERN
INFN
Belgium

5 June 2012
 June

THE PHYSICS PROGRAMME AT THE PS

The East Area beam lines but also.....

nTOF: THE NEUTRON TIME OF FLIGHT FACILITY

Neutrons are generated by a pulsed beam of $20 \mathrm{GeV} / \mathrm{c}$ protons (6 ns RMS), hitting a lead spallation target. Each pulse provides up to 810^{12} protons ($\sim 25 \mathrm{~kJ}$), i.e. 6-20 kW on average. Every proton yields $\sim 300 \mathrm{n}$. The neutrons span an energy range from the $\mathbf{m e V}$ to the GeV region.

The neutrons are collimated and guided through an evacuated pipe of 185 m length to the experimental area, where the neutrons impinge on a sample. A number of detectors allow to detect the reaction products.

The Antiproton Decelerator (AD)

\#1 NEW YORK TIMES BESTSELLING AUTHOR OF the da vinci code

Before

THE DA VINCI CODE was broken,
the world lay at the mercy of
 1
Robert Langdon's first adventure

Antiprotons are produced from pulses of 1.510^{13} protons at $26 \mathrm{GeV} / \mathrm{c}$ on a Iridium production target, followed by a magnetic horn.

The antiprotons are then decelerated to $100 \mathrm{MeV} / \mathrm{c}$. During this deceleration, the beam is again cooled several times with stochastic and electron cooling to counteract adiabatic blow-up during the energy decrease.

The beam is fast extracted and then sent to the experiments ALPHA, ATRAP, ASACUSA, BASE and AEGIS. The pbar intensity is about 410^{7} per pulse.

The AD machine

For 2017

The East Area Beams

(Schematic view - till 2012!)

T7 beam
(not used)

DIRAC

T9 beam

N-target

12 (15) GeV/c
T10 beam
T11: 3.6 GeV/c, 150 mrad
$6 \mathrm{GeV} / \mathrm{c}, 60 \mathrm{mr}$
CLOUD

The East Area Beams

(Schematic view - From 2014!)

IRRAD

T9 beam

N -target

12 (15) GeV/c
T10 beam $6 \mathrm{GeV} / \mathrm{c}, 60 \mathrm{mr}$

The Beam Line for CLOUD

Beam spot $\sim 1.6 \times 1.6 \mathrm{~m}^{2}$

THE CLOUD EXPERIMENT IN THE T11 BEAM

Two new irradiation facilities:

IRRAD - proton irradiations

CHARM - mixd field irradiations

East Area Test Beams

The T9 and T10 beam lines are mixed beams. Their maximum intensity is 10^{6} per EASTA cycle. Both beams are served from a common target, together also with the T11 beam for CLOUD. The flat top is 0.4 seconds. The number of EASTA cycles is normally 3 per super-cycle of 21.6 seconds.

Each beam line is equipped with 1 (T10) or 2 (T9) threshold Cerenkov counters, a scintillator and a Delay wire chamber.

Parameter	T9	T10
Maximum momentum (GeV/c)	12	6
Production angle (mrad)	0	61.6
Beam length to ref. focus (m)	55.8	34.9
Beam height above floor (m)	2.50	2.505
Ang.acceptance Horiz (mrad)	± 4.8	± 5.4
Vertic (mrad)	± 5.8	± 13.9
Acc. Solid angle (psterad)	87	224
Theor. momentum resol. (\%)	0.24	0.24
Max. momentum band (\%)	± 10	± 8
Magnification at ref. focus	$1.0,1.2$	$0.8,0.6$
Protons on North target	~ 2.5	
Max. flux (depending on p, Q)	10^{6}	

EXAMPLE OF A PS SUPER-CYCLE

The super-cycle can now be re-programmed 'on the fly'

2014 Basic Super cycles (24-09-2013)

Dops (Mo, Thu, We, Thu, Ft, trom 08:00 until 18:00)

SOME TYPICAL PS CYCLES

User	Momentum	Flat top	Intensity	Duration	Comments
SFTPRO	$14 \mathrm{GeV} / \mathrm{c}$	-	Up to 310^{13}	1.2 s	Need 2 to fill SPS ${ }^{*}$)
CNGS	$14 \mathrm{GeV} / \mathrm{c}$	-	Up to 310^{13}	1.2 s	Need 2 to fill SPS *)
LHC	$26 \mathrm{GeV} / \mathrm{c}$	-	$1.410^{11} / \mathrm{bunch}$	1.2 s	
EASTA	$24 \mathrm{GeV} / \mathrm{c}$	0.4 s	$2-310^{11}$	2.4 s	For test beams T9+T10 + CLOUD
EASTB	$24 \mathrm{GeV} / \mathrm{c}$	0.4 s	1.210^{11}	2.4 s	For IRRAD and CHARM facilities
TOF	$20 \mathrm{GeV} / \mathrm{c}$	-	810^{12}	1.2 s	
AD		-	1.510^{13}	1.2 s	Only once per ~90 seconds
MD					Variable parameters

$\left.{ }^{*}\right)$ The SPS circumference is 11 times the PS one. Need $1 / 11^{\text {th }}$ of SPS for kicker switching and 5 turns of the PS to fill one half. The so-called CT extraction takes 5 turns.

SOME BEAM PHYSICS

PARTICLES IN A MAGNETIC FIELD

In a magnetic field, the force is perpendicular to the velocity of the particle and to the field:

$$
F=q \vee \times B
$$

In a uniform magnetic field the deflection of a particle depends on the product of field B and length L of the magnet:

$$
\boldsymbol{\theta}[\mathrm{rad}]=0.3 q \mathbf{B L}[\mathrm{Tm}] / \mathbf{p}[\mathrm{GeV} / \mathrm{c}]
$$

For a given magnet, the length is fixed but the field B (and hence the BL) can be controlled via its current I.

BENDs

$$
\theta=0.3 \frac{\mathrm{BL}}{\mathrm{P}} \quad \searrow \begin{gathered}
\text { A dipole acts } \\
\text { like a prism: }
\end{gathered}
$$

Together with a collimator, a dipole can be used to define a momentum

The $\Delta \mathrm{p}$ depends on the gap width

QUADRUPOLES

B-field lines
$\vec{B} \sim$ field line density
Focus in Horizontal plane Defocus in Vertical plane or vice versa

Magnetic force

Focus in both planes But different magnifications

Doublet optics
" - - - - 1.00 m
_ 1.00 mp

Focus in both planes, Control over magnifications

Triplet optics
..... 1.00 m
[_工 1.00 mp

Matrix elements

More useful for calculating

$$
\begin{aligned}
& \binom{X_{1}}{X_{1}}=\left(\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right)\binom{X_{o}}{X_{o}{ }^{\prime}}=\binom{R_{11} X_{o}+R_{12} X_{o}^{\prime}}{R_{21} X_{o}+R_{22} X_{o}^{\prime}} \\
& \text { e.g. : Drift space L: }\left[\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right) \quad \text { Quadrupole: } \quad\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)
\end{aligned}
$$

Generalisation to real systems

The matrix of a system is the product of the individual matrices:

Doublet optics

POSITION	TYPE		STRENGTH	*		O R I	O N T	L			VERTICAL				D I S P E R S I O N			
METERS			T*M, T/M*M	*	R11	R12	R21	R22	*	R33	R34	R43	R44	*	R16	R26	R36	R46
			$\mathrm{T} / \mathrm{M} * * 2 * M$	*	MM/MM	MM/MR	MR/MM	MR/MR	*	MM/MM	MM/MR	MR/MM	MR/MR	\star	MM/ PC	MR/PC	MM/ PC	MR/PC
0.000	3	TARGET			1.000	0.000	0.000	1.000	*	1.000	0.000	0.000	1.000	*	0.000	0.000	0.000	0.000
9.000	3			*	1.000	9.000	0.000	1.000	*	1.000	9.000	0.000	1.000	*	0.000	0.000	0.000	0.000
11.000	5	Q1	61.9865	*	0.820	9.257	-0.175	-0.751	*	1.192	12.851	0.198	2.970	*	0.000	0.000	0.000	0.000
19.000	3			*	-0.576	3.250	-0.175	-0.751	*	2.772	36.609	0.198	2.970	*	0.000	0.000	0.000	0.000
21.000	5	Q2	-61.9865	*	-1.058	2.276	-0.322	-0.253	*	2.644	35.592	-0.322	-3.955	*	0.000	0.000	0.000	0.000
30.000	3			*	-3.955	0.000	-0.322	-0.253	*	-0.253	0.000	-0.322	-3.955	*	0.000	0.000	0.000	0.000
30.000	3	FOCUS		*	-3.955	0.000	-0.322	-0.253	*	-0.253	0.000	-0.322	-3.955	*	0.000	0.000	0.000	0.000

DISPERSION

Dispersion is necessary in secondary (tertiary) beams to define the momentum:

However, for good beam performance you must:

- optimise momentum resolution
\rightarrow focus at momentum slit
- get rid of dispersion at the end of the beam line \rightarrow field lense

TRANSPORT TABLE:

1 199 test beam optics

OPOSITION TYPE	STRENGTH $*$
METERS	$T * M, T / M * M *$
	$T / M * * 2 * M *$

HORIZONTAL *
PG3H * *********
0.000 0.000 $1.000 *$
$1.000 *$

0.000	3	PG3H	
4.310	3		
5.090	5	QDE1	-29.9058
5.580	3		
6.820	5	QFO2	26.7793

8.200	3		$*$
10.800	4	BHZ1	3.6025
11.230	3		$*$

11.910	3	STP1

14.211	3	STP2	$*$
14.928	3		$*$
15.828	3	MCH1	$*$

16.164	3		
17.004	5	QFO3	*
15.1471	$*$		

17.843	3		$*$
20.443	4	BHZ2	$3.0571 *$

21.636	3	$*$
25.861	3	
27.101	5	QFO4
	11.8194	$*$

27.101	5	QFO4	11.8194	$*$
27.461	3			$*$
28.041	3	MCV1		$*$

28.521	3
28.521	$*$

31.121	4	BHZ3	3.0571
31.721	3		$*$

31.721	3		
32.961	5	QDE5	-20.3271
35.959	3		$*$

36.363	3	MWPC
38.541	3	
39.721	4	BWP1

39.721	4	BVT1	$1.4728 *$
43.051	3		$*$

$45.211 \quad 5 \quad$ QDE6 -20.5147 *
45.6513 * $3 \quad 9.738$
47.8115 QFO7 19.8024 * 11.433

48.631	3	CH1	19.8024	$*$	11.433	7.112	-1.530	-0.864	$*$
49.427									
4	$*$	10.179	6.403	-1.530	-0.864	$*$	44.268		

53.661	3	CH2	$*$	2.484	2.057	-1.530	-0.864	$*$	12.621
56.013	3	MWPC	$*$	-1.114	0.024	-1.530	-0.864	$*$	-2.177
55.811	3			-0.0					

55.8113 *

| 55.811 | 3 | FOC | \star | -0.805 | 0.199 | -1.530 | -0.864 | $*$ | -0.906 |
| ---: | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | $\begin{array}{ll}4.310 & 0.000\end{array}$ $\begin{array}{lll}6.196 & 0.645 & 4.023 \\ 8.168 & 0.645 & 4.023\end{array} \quad 0.776$

1.000
$8.168 \quad 0.645 \quad 4.023 * \quad 0.505$ $\begin{array}{lllll}1.367 & 8.481 & -0.302 & -1.143 & *\end{array}-0.695$

TRANSPORT RUN28/02/08
VERTICAI
DISPERSION

| DIS PR R S O | |
| ---: | ---: | ---: |
| R26 | R36 |

R46
MR/PC $\begin{array}{ll}0.000 & 0.000 \\ 4.310 & 0.000\end{array}$ $1.000=$

1.000	$4.065-0.552-1.605$	-0.000
.0 .000		0.000

0.000 *********
0.000
$3.278-0.552 \cdots 0.000 \quad 0.000 \quad 0.000$

| $-0.552-1.605$ | -0.000 | 0.000 | 0.000 | 0.000 |
| :---: | :---: | :---: | :---: | :---: | :---: |

2.210	-0.445	-0.212	$*$	0.000	0.000	0.000							
1.917	-0.445	-0.212	$*$	0.000	0.000	0.000							
0.000								1.361	-0.442	-0.215	-0.212	-0.936	-0.720
---:	---:	---:	---:	---:	---:	$1.268-0.442-0.215 *-1.245 \quad-0.720 \quad 0.000 \quad 0.000$ $\begin{array}{lllllll}1.122 & -0.442 & -0.215 & * & -1.735 & -0.720 & 0.000 \\ 0.773 & -0.442 & -0.215 & * & -2.903 & -0.720 & 0.000\end{array} 0.000$ $\begin{array}{lll}0.773 & -0.442 & -0.215 \\ 0.626 & -0.442 & -0.215\end{array}$							

$\begin{array}{lllll}0.626 & -0.442 & -0.215 & -3.393 & -0 .\end{array}$
$\begin{array}{llll}0.278 & -0.442 & -0.215 & -0.442 \\ 0.2 .215 & -0.3 .909 & -4.557\end{array}$
-0.720
-0.720
$-0.215 *-4.799$
$-0.178 *-4.782$
$\begin{array}{lll}0.720 & 0.000 & 0.000 \\ -0.720 & 0.000 & 0.000\end{array}$
$\begin{array}{ccc}-0.720 & 0.000 & 0.000\end{array}$
$\begin{array}{lll}0.761 & 0.000 & 0.000 \\ 0.761 & 0.000 & 0.000\end{array}$
$\begin{array}{lll}0.761 & 0.000 & 0.000 \\ 0.150 & 0.000 & 0.000\end{array}$
$\begin{array}{lll}0.150 & 0.000 & 0.000 \\ 0.150 & 0.000 & 0.000\end{array}$
$\begin{array}{lll}0.150 & 0.000 & 0.000 \\ 0.611 & 0.000 & 0.000\end{array}$
$0.611 \quad 0.000 \quad 0.000$
$\begin{array}{ll}0.611 & 0.000 \\ 0.611 & 0.000\end{array}$
0.611
0.000

0

0
00
00
00
00
00
94
1
3
1

T9 test beam optics

COLLIMATION

- Collimation is as important for beam quality as optics
- Optics and collimation are very much correlated

In T9 we consider 2 different types of collimators:

1. Momentum slits
2. Acceptance collimators

1. Momentum slit

Normally located at a dispersive focus.
The center of the gap should be at the nominal beam axis.
The aperture is proportional to the accepted momentum band,
The rate is normally also proportional to the gap.
However, the $\Delta P / p$ cannot be smaller than the intrinsic resolution.
Hence the need (in general) to have a rather sharp focus.

2. Acceptance collimator

Located where the beam is large (ideally even parallel), Allows to define the angular aperture of the beam, Affects therefore the rate as well, however non-linearly.

Momentum slit

Intensities in a secondary beam

WHAT HAPPENS TO PARTICLES IN MATTER?
Hadronic showers ($\mathrm{p}, \mathrm{n}, \mathrm{K}, \pi, \Lambda, \ldots$)
Typical length scale: $L_{\text {int }}$
p, π

$$
\pi^{0} \rightarrow \gamma+\gamma
$$

Electromagnetic showers ($\gamma, \mathrm{e}^{+}, \mathrm{e}^{-}$)

$$
\gamma \square \mathbf{e}^{+}+\mathbf{e}-
$$

Typical length scale: \mathbf{X}_{0}
Muons are produced mainly via pion decay.
They traverse many metres of material with minimum energy loss: $2 \mathrm{GeV} / \mathrm{m}$ Iron)

Material	X_{o}	$\mathrm{L}_{\text {int }}$	$\mathrm{X}_{\mathrm{o}} / \mathrm{L}_{\text {int }}$
Beryllium	35.3 cm	40.7 cm	0.87
Copper	1.50 cm	15.0 cm	0.10
Lead	0.56 cm	17.1 cm	0.03

HADRON TARGET

ELECTRON ENRICHED TARGET

Beam rates

Estimated maximum flux in positive beam

Estimated maximum flux in negative beam

For wide open collimators, i.e. $\Delta \mathrm{p} / \mathrm{p} \approx \pm 7.5 \%$

Beam Composition

With electron enriched target (otherwise $e^{ \pm}$strongly reduced)

SCINTILLATORS

Scintillating material (some plastics) produce light when traversed by charged particles.
Light is transmitted to photomultiplier by light guide.
In the photomultiplier the light is converted into an electrical pulse. After discrimination these pulses are counted by scalers and the count rates are transmitted to the control system.

Individual particles are counted as a function of beam conditions. Useful for monitoring, beam tuning and as a timing signal (T0) for more complicated detectors (XCET, Cedar, XDWC).

Strobing of complicated detectors:

Limited to $\approx 10^{7}$ particles per second.
Examples:

XTRI,XTRS FISCS

Big scintillators to count full beam
Narrow, mobile scintillators to scan through beam

WIRE CHAMBERS

Charged particles ionise the gas.
The electrons drift to the anode wire, where the field increases, due the extremely small radius \rightarrow Gas amplification. An electrical pulse is produced, discriminated and sent to DAQ.

The positive ions drift slowly to the cathode plane \rightarrow slow detectors.

Due to well chosen geometry each wire corresponds to a cell, electrically insulated from its neighbour. The wire hit gives an indication about the position of the particle, resolution $\pm 0.5 \mathrm{~d}$.

Examples:

Wire chamber XWCA

XWCD

Each hit gives $x \pm d / 2$ for the particle measured, limited to ≈ 107 particles per burst. Integrate charge deposited on each wire over the burst. Depends on HV! No information about individual particles, but profiles for 10^{4} to $10^{10} \mathrm{ppp}$. The time between the signal on the wire and the time of particle passage (XTRI, XTRS) measures the distance between particle and wire. Improves the resolution to about $100 \mu \mathrm{~m}$. Rates $\leq 10^{7} \mathrm{ppp}$.

Threshold Cerenkov counters

In a medium (e.g. He or N2 gas):

$$
\begin{aligned}
& \text { particle: } v / c=p / \sqrt{ }\left(p^{2}+m^{2}\right) \\
& \text { light: } \quad v / c=1 / n
\end{aligned}
$$

If a charged particle goes faster than light in a medium, it emits Cerenkov light in a cone with half-opening angle ϕ :

$$
\phi^{2}=2 k P-m^{2} / \mathbf{p}^{2}
$$

where k depends on the gas, $\mathrm{P}=$ pressure.
Light is thus only emitted when $\emptyset^{2} \geq 0$!!!
The \# $\gamma^{\prime} \mathrm{s} \sim \emptyset^{2}$ and increases from 0 at threshold to $\approx 100 \%$ at very high pressures.

For e $/ \pi$ separation

By selecting the right operating pressure, one type of particle has good efficiency and the other gives no signal.
By making a coincidence with scintillator signals, particle identification can be made. XCET counters are better at low momenta, CEDARS allow good separation at high momenta ($300 \mathrm{GeV} / \mathrm{c}$), but are more complicated and need careful tuning.

XCET's are usually operated with Helium or Nitrogen at pressures between 20 mbar and 3 bar.

CALORIMETER

Principle:

Particles shower in the lead-glass block. At the end of the shower, the small energy quanta remaining deposit their energy in the form of light.
The light is captured by a photomultiplier that transforms it into an electrical pulse.
The amount of light (thus the electrical signal) is proportional to the deposited energy.

As the energy is deposited in \mathbf{N} quanta, the relative precision of the measurement is limited by statistical fluctuations on \mathbf{N}, i.e. :

$$
\sigma(E) / E \sim 1 / \sqrt{E}
$$

Normally a calorimeter is used for energy measurements,
But in our case its main use is for particle identification.

Electron shower:

Regular
Fully contained:

Hadron shower:

Irregular, Partly contained:

Muon shower:

Only dE/dx Constant, small

Particle identification via:

HOW TO CONTROL THE T9 BEAM?

Using the CESAR software !!!

\square

Magnets	Read	BeamRef	Max	Polarity	Info	F	Comments
\rangle QDE1	406.4	406.5	850	N	Def.Quad	-	
QFO2	355.7	355.7	900	N	Foc.Quad	-	
A BHZ1	893.7	893.8	1400	N	Hor.Bend	-	
QFO3	290.2	290.1	850	N	Foc.Quad	-	
A BHZ2	245.4	245.4	450	N	Hor.Bend	-	
$\rangle \mathrm{QFO} 4$	153.2	153.4	500	N	Foc.Quad	-	
A BHZ3	238.5	238.8	450	N	Hor.Bend	-	
\rangle QDES	264.1	264.2	500	N	Def.Quad	-	
A BVT4	362.9	362.9	675	N	Vert.Bend	-	
\rangle QDE6	448.9	449.0	675	N	Def.Quad	-	
\rangle QFO7	463.9	464.0	675	N	Foc.Quad	-	

\square
\square

CURRENTS FOR T9 TEST BEAM, TUNED 28-07-2014

Focus 1 m behind XDWC

Momentum	QDE1	QFO2	BHZ1	QFO3	BHZ2	QFO4	BHZ3	QDE5	BVT1	QDE6	QFO7
1.00	40.66	38.07	89.28	29.01	24.54	15.36	23.91	26.42	35.83	44.74	46.12
1.50	60.99	55.22	133.92	43.52	36.82	23.04	35.86	39.62	53.76	67.12	69.18
2.00	81.32	72.00	178.56	58.03	49.09	30.72	47.81	52.83	71.69	89.49	92.24
2.50	101.65	88.77	223.21	72.53	61.36	38.40	59.76	66.04	89.64	111.86	115.30
3.00	121.96	105.71	267.86	87.04	73.63	46.08	71.72	79.25	107.61	134.23	138.36
3.50	142.28	122.94	312.52	101.55	85.91	53.76	83.67	92.46	125.59	156.61	161.41
4.00	162.59	140.50	357.18	116.06	98.18	61.44	95.62	105.66	143.60	178.98	184.47
4.50	182.89	158.35	401.85	130.56	110.45	69.12	107.58	118.87	161.64	201.35	207.53
5.00	203.20	176.44	446.52	145.07	122.72	76.80	119.53	132.08	179.71	223.72	230.59
6.00	243.79	212.95	535.90	174.08	147.27	92.16	143.43	158.49	215.96	268.47	276.71
7.00	284.38	249.29	625.31	203.10	171.81	107.52	167.34	184.91	252.38	313.21	322.83
8.00	325.00	285.10	714.76	232.11	196.36	122.88	191.25	211.33	289.00	357.96	368.95
9.00	365.68	320.43	804.27	261.13	220.90	138.24	215.15	237.74	325.86	402.70	415.16
10.00	406.49	355.66	893.84	290.14	245.45	153.60	239.06	264.16	363.00	449.01	463.98
11.00	447.53	391.39	983.47	319.41	269.99	168.96	262.96	290.57	400.44	499.26	517.31
12.00	488.94	428.37	1073.17	350.88	294.54	184.32	286.87	317.19	438.24	554.65	576.72

OTHER FOCUSSING OPTIONS

Momentum	Focus at XDWC		XDWC + 2m		XDWC + 4.5m		XDWC + 7m		XDWC + 9.5m		Parallel beam	
GeV/c	QDE6	QF07										
1.00	45.57	47.99	44.00	44.18	42.38	40.93	41.24	38.88	40.30	37.12	36.09	32.11
1.50	68.36	71.98	65.99	66.27	63.57	61.40	61.86	58.32	60.45	55.68	54.14	48.16
2.00	91.15	95.98	87.99	88.36	84.76	81.86	82.48	77.76	80.60	74.25	72.19	64.22
2.50	113.94	119.97	109.99	110.45	105.95	102.33	103.10	97.19	100.75	92.81	90.23	80.27
3.00	136.72	143.97	131.99	132.54	127.14	122.79	123.72	116.63	120.90	111.37	108.28	96.33
3.50	159.51	167.96	153.98	154.63	148.32	143.26	144.33	136.07	141.05	129.93	126.33	112.38
4.00	182.30	191.96	175.98	176.72	169.51	163.73	164.95	155.51	161.20	148.49	144.37	128.44
4.50	205.08	215.95	197.98	198.81	190.70	184.19	185.57	174.95	181.35	167.05	162.42	144.49
5.00	227.87	239.95	219.98	220.90	211.89	204.66	206.19	194.39	201.50	185.62	180.47	160.55
6.00	273.44	287.94	263.97	265.08	254.27	245.59	247.43	233.27	241.80	222.74	216.56	192.65
7.00	319.02	335.93	307.97	309.27	296.65	286.52	288.67	272.15	282.10	259.86	252.65	224.76
8.00	364.59	383.92	351.96	353.45	339.03	327.45	329.91	311.02	322.40	296.98	288.75	256.87
9.00	410.19	432.53	395.96	397.63	381.41	368.38	371.15	349.90	362.70	334.11	324.84	288.98
10.00	458.00	485.00	441.01	442.98	424.09	409.33	412.44	388.78	403.00	371.23	360.93	321.09
11.00	510.08	542.95	489.66	492.02	469.49	452.03	455.69	428.10	444.57	408.37	397.03	353.20
12.00	567.85	608.58	543.03	545.88	518.82	498.06	502.40	469.91	489.25	446.90	433.80	385.31

Momentum: Gev/c

Magnets	Read	BeamRef	Max	Polarity	Info	F	Comments
\rangle QDE1	-548.2	-548.4	800	N	Def.Quad	-	
$<\mathrm{QFOL}^{2}$	-594.2	-594.3	800	N	Foc.Quad	-	
A BHZ1	-656.0	-656.3	790	N	Hor.Bend	-	
\rangle QFOS	-298.5	-298.6	370	N	Foc.Quad	-	
A BHZ2	-337.4	-337.4	420	N	Hor.Bend	-	
A BHZ3	-347.9	-348.0	390	N	Hor.Bend	-	
$\rangle \mathrm{QFO} 4$	-347.6	-347.7	400	N	Foc.Quad	-	
QDE5	-513.4	-513.6	520	N	Def.Quad	-	
A BVT4	-259.8	-260.0	600	N	Vert.Bend	-	

Rectifiers	CURRENT	BeamRef	TOL	MODE	POL	LOC	FAULT	Info	Comments
\rangle QDE1	406.5	406.5	0.4	ON	N			Def．Quad	
$<\mathrm{QFOL}$	355.7	355.7	0.4	ON	N			Foc．Quad	
A BHZ1	893.3	893.8	0.4	ON	N			Hor．Bend	＜BeamRef
QFO3	290.2	290.1	0.4	ON	N			Foc．Quad	
$\triangle \mathrm{BHZ2}$	245.4	245.4	0.4	ON	N			Hor．Bend	
－ QFO 4	153.4	153.4	0.4	ON	N			Foc．Quad	
A BHZ3	238.6	238.8	0.4	ON	N			Hor．Bend	
\rangle QDES	264.1	264.2	0.4	ON	N			Def．Quad	
A BVT4	362.9	362.9	0.4	ON	N			Vert．Bend	
\rangle QDE6	448.9	449.0	0.4	ON	N			Def．Quad	
\rangle QFO7	463.9	464.0	0.4	ON	N			Foc．Quad	

\squareRefresh AllRefresh Selected \square

| Beam stopper | Read | BeamRef | Info | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\square^{ \pm}$STP1 | OUT | | | |
| $\square^{ \pm}$STP2 | OUT | | | |HoldRefresh All Refresh Selected \square

Move In
Move Out Store to e-logbo...

Beam stopper \times

Scalers		Count	Galibr.	Info	Comments
1234	SEC	$1.529 \mathrm{E}+03$	1	Sec.Em. counter	
1234	EXPT.ZT9,	$3.828 \mathrm{E}+05$	1		
1234	EXPT.ZT9,	0.00E+00	1		
$\stackrel{1234}{4}$	EXPT.ZT9,	$0.00 \mathrm{E}+00$	1		
1234	EXPT.ZT9,	$0.00 \mathrm{E}+00$	1		
1234	EXPT.ZT9,	$0.00 \mathrm{E}+00$	1		
$\stackrel{1234}{4}$	EXPT.ZT91	$0.00 \mathrm{E}+00$	1		
$\stackrel{1234}{4}$	EXPT.ZT9	$0.00 \mathrm{E}+00$	1		
$\stackrel{1234}{4}$	EXPT.ZT91	$0.00 \mathrm{E}+00$	1		

\square
${ }^{1334}$ Scalers \times

Beam: ZT9 / ZT9.EXPERIMENT
File: No beam file loaded

Scintillators		Count	Coincidence	Coinc. count	HV	HV Bea..	Pos	Info	Comments
${ }_{\text {1234 }}^{124}$	TELE	$2.501 \mathrm{E}+04$	\times TEL F61N-2	$5.306 \mathrm{E}+03$	-1985		NO^{-}	90 deg telesct	
1234	SCINT:	$3.899 \mathrm{E}+05$		$3.899 \mathrm{E}+05$	-1833		IN	Scintillator	

\square
Run
\squareRefresh Selected \square
\square

曹」 Physicist Tree［z．．． 口 $^{[6}$ 园 C ㅇ

QDE1
QFO2
$\mathrm{BHZ1}$
QFO3
BHZ2
$\mathrm{BHZ3}$
QFO4
QDES BVT4 ©－-1 Rectifiers 9 Detectors O－$\frac{1234}{\square}$ EXPTs SCINTS TELE SCINT1
－Delat DELAY

－\square^{\ddagger} Beam Stoppers

Allows to access or control individual equipment directly

0.0 E10

EAST_T8
NO USER

Congratulations for having won this competition!
Good luck for a successful experiment!
And have a wonderful time at CERN !!!

THE ISOLDE COMPLEX

The HRS (High-Resolution Spectrometer) and General Purpose Spectrometer (GPS) are two isotope separators that deliver 60 keV mass separated radioactive ion beams.
They are used for nuclear physics, medical physics, astrophysics, etc

nTOF PHYSICS MOTIVATIONS

range from nuclear technology (ADS, nuclear transmutation, etc) via basic nuclear physics to nuclear astrophysics and medical applications.

nTOF EAR2 : AN UPGRADE OF THE EXISTING FACILITY

Muons from pion decay

-Pion decay in π center of mass:

$$
\begin{aligned}
& \mathrm{p}^{*}=\frac{\mathrm{m}_{\pi}^{2}-\mathrm{m}_{\mu}^{2}}{2 \mathrm{~m}_{\pi}}=30 \mathrm{MeV} / \mathrm{c} \\
& \mathbf{E}^{*}=\frac{\mathrm{m}_{\pi}^{2}+\mathrm{m}_{\mu}^{2}}{2 \mathrm{~m}_{\pi}}=110 \mathrm{MeV} / \mathrm{c}
\end{aligned}
$$

- Boost to laboratory frame:

$$
\mathbf{E}_{\mu}=\gamma_{\pi}\left(\mathbf{E}^{*}+\beta_{\pi} \mathbf{p}^{*} \cos \theta^{*}\right) \text { with } \beta_{\pi} \approx 1
$$

- Limiting cases:

$$
\begin{aligned}
& \cos \theta=+1 \rightarrow \mathbb{E}_{\max }=1.0 \mathbb{E}_{\pi} \\
& \cos \theta=-1 \rightarrow \mathbb{E}_{\min }=0.57 \mathrm{E}_{\pi}
\end{aligned}
$$

$0.57<\mathrm{E}_{\mu} / \mathrm{E}_{\pi}<1$

