RHIC Plans

- Instrumentation(Machine and Experiments)
- Heavy Ion environment
- Highlights
 - Machine Performance
 - RHIC results
- Machine Evolution
- Detectors
- 'the process''

RHIC injector and Collider

Interaction Region Geometry

Common design for vacuum chambers and forward (ZDC) Instrumentation to 18 m.

June 28, 2002

LHCC Heavy Ion discussion

PHENIX Movie(quicktime)

π^0 in p+p at $\sqrt{s} = 200$ GeV

high $p_T \pi^0$ full energy Au+Au

Particle id w. PHENIX Pb/Sc EMCAL t.o.f.

The Heavy Ion Environment:

- •Intra-beam scattering dominates luminosity <u>lifetime@RHIC</u>
- •Luminosity determination easier than p-p:known to ~5%@RHIC

L(b) vs. b known a priori

$$\frac{\int_{0}^{b} b' db'}{\int_{0}^{b} b' db'} \Leftrightarrow \% Centrality$$

N_{part},N_{bin} from Glauber model

Intra-Beam Scattering (IBS) in RHIC

Longitudinal emittance growth agrees well with model

Additional source of transverse emittance growth (Beam-beam, dynamic apert.)

IBS determines RHIC Au performance

Eventually will need electron cooling (see below)

RHIC RUN-2 Gold Parameters

- -55 56 bunches per ring (110 bunches per ring tested, intensity limited)
- -7.5×10^8 Au/bunch @ storage energy (intensity limited during acceleration)
- -1×10^9 Au/bunch achieved @ injection
- -Longitudinal emittance: 0.5 eVs/nucleon/bunch (0.3-0.6 Design)
- -Transverse emittance at storage: 15 π μ m (norm, 95%)
- -Storage energy: 100 GeV/ amu ($\gamma = 107.4$) 10 GeV / amu ($\gamma = 10.5$)
- -Lattice with β* squeeze during acceleration ramp:

 $\forall \beta^* = 3 \text{ m} \text{ and } 10 \text{m} \text{ @ all IP at injection}$

 $\forall \beta^*=1 \text{ m} @ 8 \text{ and } 2 \text{ m} @ 2, 6 \text{ and } 10 \text{ o'clock at storage}$

- -Peak Luminosity: 5×10^{26} cm⁻² s⁻¹ (2.5 × design av
- –Bunch length: 5ns with 200 MHz storage rf system (diamond length: $\sigma = 25$ cm) RHIC bunch profile

Integrated Au-Au luminosity

Example of RHIC ramp with 56 bunches

x 10⁶ Au

"Typical Store" # 1812

Highlights from Run 1(&2): Multiplicity distributions (PHOBOS et al.) Extrapolation to LHC ~1/4 of "design" dN/dη

PHENIX

Energy density

$$\varepsilon = \frac{1}{\pi R^2 \tau} \frac{dE_T}{dy}$$

for top 2% of distribution $dE_{T}/d\eta = 57^{\circ}8^{\circ}_{-39} \text{ GeV}$

 $\varepsilon = 4.6 \text{GeV/fm}^3 (\tau = 1 \text{ fm/c})$

cf. 40 GeV, $3.\text{ GeV}/\text{fm}^3$ NA49 PRL 75, 3814, (1995)

 $\varepsilon = 15 \text{GeV/fm}^3 \ (\tau = 0.3 \text{ fm/c})$

Two Particle Azimuthal Correlations at High-p_T

Strong and direct evidence for hard scattering and parton fragmentation (jets) at RHIC

yield per nucleon-nucleon collision in cent:

Electron id using Momentum and Ecal + RICH

PHENIX

E/P ratio

data are well described using PYT cross-section multiplied by number binary collisions obtained from nuclear thickness function, T_{AB} (i.e., a Glambdel).

$$\sigma_{c\bar{c}}(0-10\%) = 380 \pm 60 \pm 200 \mu b$$

$$\sigma_{cc}(0-92\%) = 420 \pm 33 \pm 250 \mu b$$

RHIC UPC Physics results from Run I.

published

Volume, Number

PHYSICAL REVIEW LETTERS

Measurement of Mutual Coulomb Dissociation in $\sqrt{s_{NN}} = 130 \text{ GeV Au} + \text{Au Collisions}$

Mickey Chiu, ¹ Alexei Denisov, ² Edmundo Garcia, ³ Judith Katzy, ⁴ Andrei Makeev, ⁵ Michael Murray, ⁵ and Sebastian White ⁶

¹ Columbia University, New York, New York 10027

² IHEP, Protvino, Russia

³ University of Maryland, College Park, Maryland 20742

⁴ MIT, Cambridge, Massachusetts 02139

⁵ Texas A&M University, College Station, Texas 77843-3366

⁶ Brookhaven National Laboratory, Upton, New York 11973

(Received 28 September 2001; revised manuscript received 19 November 2001; published)

submitted

Coherent ρ^0 Production in Ultra-Peripheral Heavy Ion Collisions

C. Adler¹¹, Z. Ahammed²³, C. Allgower¹², J. Amonett¹⁴, B.D. Anderson¹⁴, M. Anderson⁵, G.S. Averichev⁹, J. Balewski¹², O. Barannikova^{9,23}, L.S. Barnby¹⁴, J. Baudot¹³, S. Bekele²⁰, V.V. Belaga⁹, R. Bellwied³¹, J. Berger¹¹, H. Bichsel³⁰, L.C. Bland², C.O. Blyth³, B.E. Bonner²⁴, A. Boucham²⁶, A. Brandin¹⁸, A. Bravar², R.V. Cadman¹, H. Caines²⁰, M. Calderón de la Barca Sánchez², A. Cardenas²³, J. Carroll¹⁵, J. Castillo²⁶, M. Castro³¹, D. Cebra⁵, P. Chaloupka²⁰, S. Chattopadhyay³¹, Y. Chen⁶, S.P. Chernenko⁹, M. Cherney⁸, A. Chikanian³³, B. Choi²⁸, W. Christie², J.P. Coffin¹³, T.M. Cormier³¹, J.G. Cramer³⁰, H.J. Crawford⁴, W.S. Deng², A.A. Derevschikov²², L. Didenko², T. Dietel¹¹, J.E. Draper⁵, V.B. Dunin⁹, J.C. Dunlop³³, V. Eckardt¹⁶,

γ–γ

AuAu-> AuAu+e⁺e⁻ 33 kbarns

-> $AuAu+2(e^+e^-)$ 680 barns

-> $AuAu+3(e^+e^-)$ 50 barns

-> AuAu $^{-}$ +e $^{+}$ 95 barns

$L(\gamma-N)=10^{29} cm^{-2}s^{-1} 2 < E_{\gamma} < 300 GeV$

(At nominal RHIC running)

$\gamma - N$

AuAu->Au+Au* 92 barns

L→ X+neutrons

AuAu->Au*+Au* 3.6 barns

→ X+neutrons

Y+neutrons

June 28, 2002

LHCC Heavy

Correlated Forward-Backward Dissociation

Weizsäcker-Williams (WW) method

- A.Baltz, M.J.Rhoades-Brown, J.Weneser, Phys. Rev. E 54 (1996) 4233.
- [2] A.J. Baltz, S.N.White, RHIC/DET Note 20, BNL-67127 (1996)
- [3] S.N.White, Nucl. Instrum. Meth. A409, 618 (1998).
- [4] A.J.Baltz, C.Chasman and S.N.White, Nucl. Instrum. Meth. A417, 1 (1998) nuclex/9801002.
- [5] I.A. Pshenichnov , J.P. Bondorf , I.N. Mishustin , A. Ventura , and S. Masetti, nuclth/0101035

Efficiencies(hadronic):

$$\epsilon_{bbc} = (92 \pm 2)\% \text{ (HIJING)*}$$

$$\epsilon_{bbc} = (93 \pm 2)\% \text{ (JAM)}$$

$$\epsilon_{zdc} = (98 \pm 2)\% \text{ (conservative),}$$

$$\epsilon_{zdc} = (99.5 - 1.5)\% \text{ (realistic)}$$
*(in PHENIX Multiplicity PRL)

BBC ineff-> Coulomb bkg

Other corrections

- •Coulomb-> BBC hits
- •Coulomb->ZDC miss
- •Diffraction Dissociation (all negligible)

June 28, 2002

LHCC Heavy Ion discussion

Technology for tagging Photonuclear processes (and Pomeron mediated..)

E asymmetry= $(E_{ZDCl}-E_{ZDCr})/(E+E)$

Exclusive Vector Meson Production γA→VA

Exclusive ρ production AuAu -> AuAu ρ ⁰

... with nuclear excitation

June 28, 2002

LHCC Heavy Ion discussion

Q:Why not use p-p since higher Luminosity*Running time? A: Z^2 (or Z^4) beats $A^{0.3}$ * $B^{0.3}$

 2 GeV/c^2 , c = 0.90, 0.95 and 0.97. The single diffraction photon-pomeron

cross section is given for $M_{\gamma F} > 2 \text{ GeV/c}^2$ and c = 0.95

Fig. 9. As Fig. 4 but for heavy ion reactions Pb-Pb

Luminosity Measurement

1) Using "ZDC cross section"

TABLE I. Cross sections calculated and derived from the data. The errors quoted on measurements include the uncertainty of the BBC cross section [8]

*Cross Section	Calculated Value(1)	Calculated Value(2)	Measured
σ_{tot}	$10.83 \pm 0.5 Barns$	$11.19~\pm$	N.A.
σ_{geom}	$7.09 \pm xx$	$7.29 \pm xx$	N.A.
$rac{\sigma_{geom}}{\sigma_{tot}}$	0.67	0.65	$0.661\ \pm0.014$
electromagnetic			
$\frac{\sigma(1n,Xn)}{\sigma_{tot}}$	0.125	xx	$0.117\pm0.003\pm\!0.002$
$\frac{\sigma(1n,1n)}{\sigma_{1n,Xn}}$	0.329	xx	$0.345 \pm 0.01 \pm 0.006$
$\frac{\sigma(2n, Xn)}{\sigma_{1n, Xn}}$	xx	0.327	$0.345 \pm 0.011 \pm 0.01$

*Definitions

June 28, $\sigma_{\text{tot}} = \sigma_{\text{(Mutual Coulomb Dissociation)}}$ $\sigma_{\text{(geom)}} = \sigma_{\text{(hadronic)}}$

2) Machine based

$$L = \frac{3f_{rev}\gamma}{2} \frac{N_b N^2}{\varepsilon \beta^*}$$

$$N_b = 56; N = 1 \times 10^9;$$

 $\varepsilon = 15$ to $40\pi m$ m;

$$\beta^* = 1 - 10m$$

Van derMeer scans to measure $\varepsilon\beta^*$ (at PHENIX)

June 28, 2002

RUN2003 Goals (~ 3-4 weeks into run)

– Prepare for modes with: Energy/beam: 100 GeV/nucl., diamond length: σ = 20 cm, L_{ave} (week)/ L_{ave} (store) = 40 %

Mode	# bunches	Ions/bunch [×10 ⁹]	β* [m]	Emittan ce	L _{peak} [cm ⁻² s ⁻	L _{ave} (stor e)	L _{ave} (week) [week ⁻¹]
				[πμm]	1]	[cm ⁻² s ⁻¹]	
Au-Au	56	1	1	15-40	14	3×10^{26}	70 (μb) ⁻¹
					$\times 10^{26}$		
d-Au	56	100(d),	2	20	5×	2×10^{28}	5 (nb)-1
		1(Au)			10^{28}		
Si-Si	56	7	1	20	5×	2×10^{28}	5 (nb)-1
					10^{28}		

Acceptance, Cross Sections and Resolution

central arms: $J/\psi \rightarrow e^+e^$ $p_t > 200 \text{ MeV/c}$ $\Delta \phi = 2x \pi/2$ $-0.35 < \eta < 0.35$

central arm	acceptance (4 ^{π})	σ _{pp}	B _{ee} $\sigma_{pp} A^{1.92}$ a Au-Au	$\begin{matrix} \textbf{resolution} \\ \textbf{\sigma}_{m} \end{matrix}$
J/Ψ	0.8%	$3.3 \mu_b$	$_{40}\mu_b$	20 MeV
Y	1.7%	10 nb	110 nb	120 MeV

muon arms: J/ψ , ψ , $Y \rightarrow \mu^{+}\mu^{-}$ p > 2 GeV/c $\Delta \phi = \pi$ $-1.2 < \eta < -2.2$ $1.2 < \eta < 2.4$

muon arms	acceptance (4 ^{π})	$\sigma_{_{ m pp}}$	B _{ee} $\sigma_{pp} A^{1,92}$ a Au-Au	$\begin{matrix} \text{resolution} \\ \sigma_{_m} \end{matrix}$
J/Ψ	8.6%	$3.3 \mu_b$	$430~\mu_b$	110 MeV
Y	6%	10 nb	380 nb	200 MeV

~ factor 10 larger acceptance for μμ

Heavy Ion Luminosity Upgrades

•	RDM	RDM+	RHIC	CII
•Initial emittance(95%) πμm	15	15	15	
•Final emittance (95%) $\pi\mu m$	40	40	3	
Beta function at IR [m]	2.0	1.0	$1.0 \rightarrow$	0.5
Number of bunches	56	112	112	
•Bunch population [10 ⁹]	1	1	1	
•Beam-beam parameter per II	R	0.0016	0.001	6 0.004
•Angular size at IR [µrad]	108	153	95	
•RMS beam size at IR [µm]	216	150	95	
•Peak luminosity [10 ²⁶ cm ⁻² s	-1]	8	32	83
•Average luminosity [10 ²⁶ cm	$n^{-2} s^{-1}$	2	8	70

- •RDM and RDM+ assume 10 hr stores
- •RIME Appincludes electron beam cooling and assumes 5 hr stores since burn-off is high

RHIC Luminosity and Emittance with Cooling

Impact of higher Luminosity on RHIC detector performance

Calculated distortion from normal collisions

Calculated distortion at design L

(beam axis view)

STAR TPC performance with RHIC II under study

Space charge summary

	L	DCA measured (beam gas)	DCA expected (beam gas)	DCA calculated (normal collisions)
Year 1	~0.5x10 ²⁶	3 mm		0.2 mm
Design	2x10 ²⁶		3 mm	0.7 mm
Upgrade	80x10 ²⁶		3 mm	27 mm

June 28, 2002

LHCC Heavy Ion discussion

Timeline for a major new project

DOE "Critical Decision" milestones

• BNL submits "Mission Need" statement (scientific justification	n): Sept. 2002
DOE CD-0 (Mission Need)	Feb. 2003
 Prelim. CDR for electron cooling, detector upgrades 	Sept. 2003
 BNL PAC scientific review of detector upgrade proposals 	Oct. 2003
NSAC Review	Jan. 2004
DOE CD-1 (Approve preliminary baseline range)	Mar. 2004
Conceptual designs complete	Dec. 2004
DOE CD-2 (Approve performance baseline)	Feb. 2005
DOE CD-3 (Approve start of construction)	Sept. 2005
e-Cooling complete	Sept. 2008
DOE CD-4 (Project operational)	Sept. 2009

Absorber and Beam Instrumentation (common design for CMS and ATLAS I.r.'s)-TAN

