RHIC Plans - Instrumentation(Machine and Experiments) - Heavy Ion environment - Highlights - Machine Performance - RHIC results - Machine Evolution - Detectors - 'the process'' #### **RHIC injector and Collider** #### **Interaction Region Geometry** Common design for vacuum chambers and forward (ZDC) Instrumentation to 18 m. June 28, 2002 LHCC Heavy Ion discussion #### PHENIX Movie(quicktime) # π^0 in p+p at $\sqrt{s} = 200$ GeV # high $p_T \pi^0$ full energy Au+Au #### Particle id w. PHENIX Pb/Sc EMCAL t.o.f. #### **The Heavy Ion Environment:** - •Intra-beam scattering dominates luminosity <u>lifetime@RHIC</u> - •Luminosity determination easier than p-p:known to ~5%@RHIC L(b) vs. b known a priori $$\frac{\int_{0}^{b} b' db'}{\int_{0}^{b} b' db'} \Leftrightarrow \% Centrality$$ N_{part},N_{bin} from Glauber model # Intra-Beam Scattering (IBS) in RHIC Longitudinal emittance growth agrees well with model Additional source of transverse emittance growth (Beam-beam, dynamic apert.) IBS determines RHIC Au performance Eventually will need electron cooling (see below) ### RHIC RUN-2 Gold Parameters - -55 56 bunches per ring (110 bunches per ring tested, intensity limited) - -7.5×10^8 Au/bunch @ storage energy (intensity limited during acceleration) - -1×10^9 Au/bunch achieved @ injection - -Longitudinal emittance: 0.5 eVs/nucleon/bunch (0.3-0.6 Design) - -Transverse emittance at storage: 15 π μ m (norm, 95%) - -Storage energy: 100 GeV/ amu ($\gamma = 107.4$) 10 GeV / amu ($\gamma = 10.5$) - -Lattice with β* squeeze during acceleration ramp: $\forall \beta^* = 3 \text{ m} \text{ and } 10 \text{m} \text{ @ all IP at injection}$ $\forall \beta^*=1 \text{ m} @ 8 \text{ and } 2 \text{ m} @ 2, 6 \text{ and } 10 \text{ o'clock at storage}$ - -Peak Luminosity: 5×10^{26} cm⁻² s⁻¹ (2.5 × design av - –Bunch length: 5ns with 200 MHz storage rf system (diamond length: $\sigma = 25$ cm) RHIC bunch profile # Integrated Au-Au luminosity # Example of RHIC ramp with 56 bunches x 10⁶ Au # "Typical Store" # 1812 Highlights from Run 1(&2): Multiplicity distributions (PHOBOS et al.) Extrapolation to LHC ~1/4 of "design" dN/dη #### **PHENIX** ## Energy density $$\varepsilon = \frac{1}{\pi R^2 \tau} \frac{dE_T}{dy}$$ for top 2% of distribution $dE_{T}/d\eta = 57^{\circ}8^{\circ}_{-39} \text{ GeV}$ $\varepsilon = 4.6 \text{GeV/fm}^3 (\tau = 1 \text{ fm/c})$ cf. 40 GeV, $3.\text{ GeV}/\text{fm}^3$ NA49 PRL 75, 3814, (1995) $\varepsilon = 15 \text{GeV/fm}^3 \ (\tau = 0.3 \text{ fm/c})$ ### Two Particle Azimuthal Correlations at High-p_T Strong and direct evidence for hard scattering and parton fragmentation (jets) at RHIC yield per nucleon-nucleon collision in cent: # Electron id using Momentum and Ecal + RICH #### **PHENIX** E/P ratio data are well described using PYT cross-section multiplied by number binary collisions obtained from nuclear thickness function, T_{AB} (i.e., a Glambdel). $$\sigma_{c\bar{c}}(0-10\%) = 380 \pm 60 \pm 200 \mu b$$ $$\sigma_{cc}(0-92\%) = 420 \pm 33 \pm 250 \mu b$$ #### RHIC UPC Physics results from Run I. #### published Volume, Number PHYSICAL REVIEW LETTERS #### Measurement of Mutual Coulomb Dissociation in $\sqrt{s_{NN}} = 130 \text{ GeV Au} + \text{Au Collisions}$ Mickey Chiu, ¹ Alexei Denisov, ² Edmundo Garcia, ³ Judith Katzy, ⁴ Andrei Makeev, ⁵ Michael Murray, ⁵ and Sebastian White ⁶ ¹ Columbia University, New York, New York 10027 ² IHEP, Protvino, Russia ³ University of Maryland, College Park, Maryland 20742 ⁴ MIT, Cambridge, Massachusetts 02139 ⁵ Texas A&M University, College Station, Texas 77843-3366 ⁶ Brookhaven National Laboratory, Upton, New York 11973 (Received 28 September 2001; revised manuscript received 19 November 2001; published) #### submitted #### Coherent ρ^0 Production in Ultra-Peripheral Heavy Ion Collisions C. Adler¹¹, Z. Ahammed²³, C. Allgower¹², J. Amonett¹⁴, B.D. Anderson¹⁴, M. Anderson⁵, G.S. Averichev⁹, J. Balewski¹², O. Barannikova^{9,23}, L.S. Barnby¹⁴, J. Baudot¹³, S. Bekele²⁰, V.V. Belaga⁹, R. Bellwied³¹, J. Berger¹¹, H. Bichsel³⁰, L.C. Bland², C.O. Blyth³, B.E. Bonner²⁴, A. Boucham²⁶, A. Brandin¹⁸, A. Bravar², R.V. Cadman¹, H. Caines²⁰, M. Calderón de la Barca Sánchez², A. Cardenas²³, J. Carroll¹⁵, J. Castillo²⁶, M. Castro³¹, D. Cebra⁵, P. Chaloupka²⁰, S. Chattopadhyay³¹, Y. Chen⁶, S.P. Chernenko⁹, M. Cherney⁸, A. Chikanian³³, B. Choi²⁸, W. Christie², J.P. Coffin¹³, T.M. Cormier³¹, J.G. Cramer³⁰, H.J. Crawford⁴, W.S. Deng², A.A. Derevschikov²², L. Didenko², T. Dietel¹¹, J.E. Draper⁵, V.B. Dunin⁹, J.C. Dunlop³³, V. Eckardt¹⁶, γ–γ AuAu-> AuAu+e⁺e⁻ 33 kbarns -> $AuAu+2(e^+e^-)$ 680 barns -> $AuAu+3(e^+e^-)$ 50 barns -> AuAu $^{-}$ +e $^{+}$ 95 barns ## $L(\gamma-N)=10^{29} cm^{-2}s^{-1} 2 < E_{\gamma} < 300 GeV$ (At nominal RHIC running) #### $\gamma - N$ AuAu->Au+Au* 92 barns L→ X+neutrons AuAu->Au*+Au* 3.6 barns → X+neutrons Y+neutrons June 28, 2002 LHCC Heavy #### Correlated Forward-Backward Dissociation #### Weizsäcker-Williams (WW) method - A.Baltz, M.J.Rhoades-Brown, J.Weneser, Phys. Rev. E 54 (1996) 4233. - [2] A.J. Baltz, S.N.White, RHIC/DET Note 20, BNL-67127 (1996) - [3] S.N.White, Nucl. Instrum. Meth. A409, 618 (1998). - [4] A.J.Baltz, C.Chasman and S.N.White, Nucl. Instrum. Meth. A417, 1 (1998) nuclex/9801002. - [5] I.A. Pshenichnov , J.P. Bondorf , I.N. Mishustin , A. Ventura , and S. Masetti, nuclth/0101035 #### Efficiencies(hadronic): $$\epsilon_{bbc} = (92 \pm 2)\% \text{ (HIJING)*}$$ $$\epsilon_{bbc} = (93 \pm 2)\% \text{ (JAM)}$$ $$\epsilon_{zdc} = (98 \pm 2)\% \text{ (conservative),}$$ $$\epsilon_{zdc} = (99.5 - 1.5)\% \text{ (realistic)}$$ *(in PHENIX Multiplicity PRL) BBC ineff-> Coulomb bkg #### Other corrections - •Coulomb-> BBC hits - •Coulomb->ZDC miss - •Diffraction Dissociation (all negligible) June 28, 2002 LHCC Heavy Ion discussion Technology for tagging Photonuclear processes (and Pomeron mediated..) E asymmetry= $(E_{ZDCl}-E_{ZDCr})/(E+E)$ #### Exclusive Vector Meson Production γA→VA Exclusive ρ production AuAu -> AuAu ρ ⁰ ... with nuclear excitation June 28, 2002 LHCC Heavy Ion discussion #### Q:Why not use p-p since higher Luminosity*Running time? A: Z^2 (or Z^4) beats $A^{0.3}$ * $B^{0.3}$ 2 GeV/c^2 , c = 0.90, 0.95 and 0.97. The single diffraction photon-pomeron cross section is given for $M_{\gamma F} > 2 \text{ GeV/c}^2$ and c = 0.95 Fig. 9. As Fig. 4 but for heavy ion reactions Pb-Pb # Luminosity Measurement #### 1) Using "ZDC cross section" TABLE I. Cross sections calculated and derived from the data. The errors quoted on measurements include the uncertainty of the BBC cross section [8] | *Cross Section | Calculated Value(1) | Calculated Value(2) | Measured | |--|-----------------------|---------------------|----------------------------| | σ_{tot} | $10.83 \pm 0.5 Barns$ | $11.19~\pm$ | N.A. | | σ_{geom} | $7.09 \pm xx$ | $7.29 \pm xx$ | N.A. | | $ rac{\sigma_{geom}}{\sigma_{tot}}$ | 0.67 | 0.65 | $0.661\ \pm0.014$ | | electromagnetic | | | | | $\frac{\sigma(1n,Xn)}{\sigma_{tot}}$ | 0.125 | xx | $0.117\pm0.003\pm\!0.002$ | | $\frac{\sigma(1n,1n)}{\sigma_{1n,Xn}}$ | 0.329 | xx | $0.345 \pm 0.01 \pm 0.006$ | | $\frac{\sigma(2n, Xn)}{\sigma_{1n, Xn}}$ | xx | 0.327 | $0.345 \pm 0.011 \pm 0.01$ | #### *Definitions June 28, $\sigma_{\text{tot}} = \sigma_{\text{(Mutual Coulomb Dissociation)}}$ $\sigma_{\text{(geom)}} = \sigma_{\text{(hadronic)}}$ #### 2) Machine based $$L = \frac{3f_{rev}\gamma}{2} \frac{N_b N^2}{\varepsilon \beta^*}$$ $$N_b = 56; N = 1 \times 10^9;$$ $\varepsilon = 15$ to $40\pi m$ m; $$\beta^* = 1 - 10m$$ Van derMeer scans to measure $\varepsilon\beta^*$ (at PHENIX) June 28, 2002 # RUN2003 Goals (~ 3-4 weeks into run) – Prepare for modes with: Energy/beam: 100 GeV/nucl., diamond length: σ = 20 cm, L_{ave} (week)/ L_{ave} (store) = 40 % | Mode |
bunches | Ions/bunch [×10 ⁹] | β* [m] | Emittan
ce | L _{peak} [cm ⁻² s ⁻ | L _{ave} (stor e) | L _{ave} (week)
[week ⁻¹] | |-------|--------------|--------------------------------|--------|---------------|--|-------------------------------------|--| | | | | | [πμm] | 1] | [cm ⁻² s ⁻¹] | | | Au-Au | 56 | 1 | 1 | 15-40 | 14 | 3×10^{26} | 70 (μb) ⁻¹ | | | | | | | $\times 10^{26}$ | | | | d-Au | 56 | 100(d), | 2 | 20 | 5× | 2×10^{28} | 5 (nb)-1 | | | | 1(Au) | | | 10^{28} | | | | Si-Si | 56 | 7 | 1 | 20 | 5× | 2×10^{28} | 5 (nb)-1 | | | | | | | 10^{28} | | | #### Acceptance, Cross Sections and Resolution central arms: $J/\psi \rightarrow e^+e^$ $p_t > 200 \text{ MeV/c}$ $\Delta \phi = 2x \pi/2$ $-0.35 < \eta < 0.35$ | central arm | acceptance (4 ^{π}) | σ _{pp} | B _{ee} $\sigma_{pp} A^{1.92}$ a Au-Au | $\begin{matrix} \textbf{resolution} \\ \textbf{\sigma}_{m} \end{matrix}$ | |-------------|---|-----------------|--|--| | J/Ψ | 0.8% | $3.3 \mu_b$ | $_{40}\mu_b$ | 20 MeV | | Y | 1.7% | 10 nb | 110 nb | 120 MeV | muon arms: J/ψ , ψ , $Y \rightarrow \mu^{+}\mu^{-}$ p > 2 GeV/c $\Delta \phi = \pi$ $-1.2 < \eta < -2.2$ $1.2 < \eta < 2.4$ | muon
arms | acceptance (4 ^{π}) | $\sigma_{_{ m pp}}$ | B _{ee} $\sigma_{pp} A^{1,92}$ a Au-Au | $\begin{matrix} \text{resolution} \\ \sigma_{_m} \end{matrix}$ | |--------------|---|---------------------|--|--| | J/Ψ | 8.6% | $3.3 \mu_b$ | $430~\mu_b$ | 110 MeV | | Y | 6% | 10 nb | 380 nb | 200 MeV | ~ factor 10 larger acceptance for μμ # Heavy Ion Luminosity Upgrades | • | RDM | RDM+ | RHIC | CII | |---|-----------------|--------|-------------------|---------| | •Initial emittance(95%) πμm | 15 | 15 | 15 | | | •Final emittance (95%) $\pi\mu m$ | 40 | 40 | 3 | | | Beta function at IR [m] | 2.0 | 1.0 | $1.0 \rightarrow$ | 0.5 | | Number of bunches | 56 | 112 | 112 | | | •Bunch population [10 ⁹] | 1 | 1 | 1 | | | •Beam-beam parameter per II | R | 0.0016 | 0.001 | 6 0.004 | | •Angular size at IR [µrad] | 108 | 153 | 95 | | | •RMS beam size at IR [µm] | 216 | 150 | 95 | | | •Peak luminosity [10 ²⁶ cm ⁻² s | -1] | 8 | 32 | 83 | | •Average luminosity [10 ²⁶ cm | $n^{-2} s^{-1}$ | 2 | 8 | 70 | - •RDM and RDM+ assume 10 hr stores - •RIME Appincludes electron beam cooling and assumes 5 hr stores since burn-off is high ### RHIC Luminosity and Emittance with Cooling #### Impact of higher Luminosity on RHIC detector performance ## Calculated distortion from normal collisions Calculated distortion at design L (beam axis view) #### STAR TPC performance with RHIC II under study # Space charge summary | | L | DCA
measured
(beam gas) | DCA expected (beam gas) | DCA calculated (normal collisions) | |---------|-----------------------|-------------------------------|-------------------------|------------------------------------| | Year 1 | ~0.5x10 ²⁶ | 3 mm | | 0.2 mm | | Design | 2x10 ²⁶ | | 3 mm | 0.7 mm | | Upgrade | 80x10 ²⁶ | | 3 mm | 27 mm | June 28, 2002 LHCC Heavy Ion discussion #### Timeline for a major new project DOE "Critical Decision" milestones | • BNL submits "Mission Need" statement (scientific justification | n): Sept. 2002 | |---|----------------| | DOE CD-0 (Mission Need) | Feb. 2003 | | Prelim. CDR for electron cooling, detector upgrades | Sept. 2003 | | BNL PAC scientific review of detector upgrade proposals | Oct. 2003 | | NSAC Review | Jan. 2004 | | DOE CD-1 (Approve preliminary baseline range) | Mar. 2004 | | Conceptual designs complete | Dec. 2004 | | DOE CD-2 (Approve performance baseline) | Feb. 2005 | | DOE CD-3 (Approve start of construction) | Sept. 2005 | | e-Cooling complete | Sept. 2008 | | DOE CD-4 (Project operational) | Sept. 2009 | # Absorber and Beam Instrumentation (common design for CMS and ATLAS I.r.'s)-TAN