

First Amplifier layout

-After the discovery of Amp1 problems (thanks to harmonic generation + scope) the Amp1 design has been revised and changed: 3 different configuration.

-Final configuration: 3 passages trough the rod with F1 to ~ compensate for the beam divergence: $X(3^{rd} \text{ pass})-X(1^{st} \text{ pass})\sim1.2\text{mm}$; $Y(3\text{rd pass})-Y(1\text{st pass})\sim1\text{mm}$. Nominal power ~3KW has been reached with 85amp Satisfactory trace pulse stability has been reached Transverse beam parameters: $M_x^2\sim2.38$; $M_x^2\sim1.94$

Temporal Profile & Power

Temporal Profile after Pockel Cell

Macro pulse window selection by Pockels Cell

Amp1 Harmonic Generation

	IR energy within 2µs gate	GREEN energy within 2µs gate	UV Energy within 2µs gate
Amp1 @80amps PC on 2µs (Best Result)	(3.97-1.3)mJ std=0.02mJ	1.170 mJ Std=0.16mJ	0.398 mJ Std=0.012 →133.3 nJ in
		~44 % efficiency	a micro pulse ~34 % efficiency
Amp1 @80amps PC on 2μs	(4.15-1.33)mJ std=0.06mJ	1.15 mJ Std=0.05mJ	0.375 mJ Std=0.02 →123.3 nJ in a micro pulse

Satisfactory conversion efficiency values has been achieved either for SHG and FHG obtaining a final micro pulse energy of ~120 nJ with only AMP1 working at 80amps

