QCD Phenomenology at High Energy

Bryan Webber

CERN & Univ. Cambridge

CERN Academic Training Lectures, October 2003

Lecture 5: DIS & hadron-hadron processes

- Deep inelastic scattering
- Scaling violation
- Small x
- Hadron-hadron processes
- * Lepton pair production
- Jet production
- ❖ Heavy quark production

Deep inelastic scattering

Consider lepton-proton scattering via exchange of virtual photon:

Standard variables are:

$$x = rac{-q^2}{2p \cdot q} = rac{Q^2}{2M(E - E')}$$
 $y = rac{q \cdot p}{k \cdot p} = 1 - rac{E'}{E}$

where $Q^2 = -q^2 > 0$, $M^2 = p^2$ and energies refer to target rest frame.

Elastic scattering has $(p+q)^2 = M^2$, i.e. x = 1. Hence deep inelastic scattering (DIS) means $Q^2 \gg M^2$ and x < 1.

Structure functions $F_i(x,Q^2)$ parametrise target structure as 'seen' by virtual photon. Defined in terms of cross section

$$\frac{d^2\sigma}{dxdy} = \frac{8\pi\alpha^2 ME}{Q^4} \left[\left(\frac{1 + (1-y)^2}{2} \right) 2xF_1 + (1-y)(F_2 - 2xF_1) - (M/2E)xyF_2 \right]$$

Bjorken limit is Q^2 , $p \cdot q \to \infty$ with x fixed. In this limit structure functions obey approximate Bjorken scaling law, i.e. depend only on dimensionless variable x:

$$F_i(x, Q^2) \longrightarrow F_i(x).$$

two orders of magnitude, in first approximation data lie on universal curve. Figure shows F_2 structure function for proton target. Although Q^2 varies by

Bjorken scaling implies that virtual photon is scattered by pointlike constituents $1/Q_0$ a length scale characterizing size of constituents. $({
m partons}) - {
m otherwise}$ structure functions would depend on ratio $Q/Q_0,$ with

- Parton model of DIS is formulated in a frame where target proton is moving ${
 m very\ fast} -- infinite\ momentum\ frame.$
- Suppose that, in this frame, photon scatters from pointlike quark with $\xi = Q^2/2p \cdot q = x.$ fraction ξ of proton's momentum. Since $(\xi p + q)^2 = m_q^2 \ll Q^2$, we must have
- \diamond In terms of Mandelstam variables $\hat{s}, \hat{t}, \hat{u}$, spin-averaged matrix element squared for massless $eq \rightarrow eq$ scattering (related by crossing to $e^+e^- \rightarrow q\bar{q}$) is

$$\sum |\mathcal{M}|^2 = 2e_q^2 e^4 \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$$

where \sum denotes average (sum) over initial (final) colours and spins.

In terms of DIS variables, $\hat{t} = -Q^2$, $\hat{u} = \hat{s}(y-1)$ and $\hat{s} = Q^2/xy$. Differential cross section is then

$$\frac{d^2\hat{\sigma}}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} [1 + (1-y)^2] \frac{1}{2} e_q^2 \delta(x-\xi).$$

 \diamond From structure function definition (neglecting M)

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left\{ [1 + (1-y)^2]F_1 + \frac{(1-y)}{x} (F_2 - 2xF_1) \right\}.$$

* Hence structure functions for scattering from parton with momentum fraction ξ is

$$\hat{F}_2 = x e_q^2 \delta(x - \xi) = 2x \hat{F}_1$$
.

 \diamond Suppose probability that quark q carries momentum fraction between ξ and $\xi + d\xi$ is $q(\xi) d\xi$. Then

$$F_2(x) = \sum_{q} \int_0^1 d\xi \ q(\xi) \ x e_q^2 \delta(x - \xi)$$
$$= \sum_{q} e_q^2 x q(x) = 2x F_1(x) .$$

- Relationship $F_2 = 2xF_1$ (Callan-Gross relation) follows from spin- $\frac{1}{2}$ property of quarks $(F_1 = 0 \text{ for spin-}0)$.
- Proton consists of three valence quarks (uud), which carry its electric charge and baryon number, and infinite sea of light $q\bar{q}$ pairs

Probed at scale Q, sea contains all quark flavours with $m_q \ll Q$. Thus at $Q \sim 1$ GeV we expect

$$F_2^{em}(x) \simeq \frac{4}{9}x[u(x) + \bar{u}(x)] + \frac{1}{9}x[d(x) + \bar{d}(x) + s(x) + \bar{s}(x)]$$

where

$$u(x) = u_V(x) + \bar{u}(x)$$

$$d(x) = d_V(x) + \bar{d}(x)$$

$$s(x) = \bar{s}(x)$$

with sum rules

$$\int_0^1 dx \ u_V(x) = 2 \ , \quad \int_0^1 dx \ d_V(x) = 1 \ .$$

Experimentally one finds

$$\sum_{q} \int_{0}^{1} dx \ x[q(x) + \bar{q}(x)] \simeq 0.5 \ .$$

gluons. Although not directly measured in DIS, gluons participate in other hard Thus quarks only carry about 50% of proton's momentum. Rest is carried by

at $Q^2 = 10 \text{ GeV}^2$. Figure shows typical set of parton distributions extracted from fits to DIS data,

Scaling violation

evolution equations of form distributions, considered earlier. In present notation, they satisfy DGLAP small x with increasing Q^2 . This is due to Q^2 dependence of parton Bjorken scaling is not exact. Structure functions decrease at large x and grow at

$$t\frac{\partial}{\partial t}q(x,t) = \frac{\alpha_{\rm S}(t)}{2\pi} \int_{x}^{1} \frac{dz}{z} P(z) q\left(\frac{x}{z},t\right) \equiv \frac{\alpha_{\rm S}(t)}{2\pi} P \otimes q$$

where P is $q \rightarrow qg$ splitting function.

Taking into account other types of parton branching that can occur in addition to $q \rightarrow qg$, we obtain coupled evolution equations

$$egin{array}{lll} trac{\partial q_i}{\partial t} &=& rac{lpha_{
m S}(t)}{2\pi} \left[P_{qq} \otimes q_i + P_{qg} \otimes g
ight] \ trac{\partial ar q_i}{\partial t} &=& rac{lpha_{
m S}(t)}{2\pi} \left[P_{qq} \otimes ar q_i + P_{qg} \otimes g
ight] \ trac{\partial g}{\partial t} &=& rac{lpha_{
m S}(t)}{2\pi} \left[P_{gq} \otimes ar \sum (q_i + ar q_i) + P_{gg} \otimes g
ight] \ . \end{array}$$

- Lowest-order splitting functions were derived in Lecture 2. More generally they from that derived in Lecture 4 for jet fragmentation functions orders. Consequently, behaviour of structure functions at small x is different inelastic scattering (spacelike branching) in leading order, but differing in higher are power series in α_s , same for jet fragmentation (timelike branching) and deep
- For the present, we concentrate on larger x values $(x \gtrsim 0.01)$, where PT expansion converges better.
- Recall solution of evolution equations for flavour non-singlet combinations V, e.g. $V = q_i - \bar{q}_i$ or $q_i - q_j$. Mixing with gluons drops out and

$$t\frac{\partial}{\partial t}V(x,t) = \frac{\alpha_{\rm S}(t)}{2\pi}P_{qq} \otimes V .$$

Taking moments (Mellin transform)

$$\tilde{V}(N,t) = \int_0^1 dx \ x^{N-1} \ V(x,t) \ ,$$

we find

$$t\frac{\partial}{\partial t}\tilde{V}(N,t) = \frac{\alpha_{\rm S}(t)}{2\pi}\gamma_{qq}^{(0)}(N)\;\tilde{V}(N,t)$$

where $\gamma_{qq}^{(0)}(N)$ is Mellin transform of $P_{qq}^{(0)}$. Solution is

$$\tilde{V}(N,t) = \tilde{V}(N,t_0) \left(\frac{\alpha_{\rm S}(t_0)}{\alpha_{\rm S}(t)}\right)^{d_{qq}(N)}$$

where $d_{qq}(N) = \gamma_{qq}^{(0)}(N)/2\pi b$.

Now $d_{qq}(1) = 0$ and $d_{qq}(N) < 0$ for $N \geq 2$. Thus as t increases V decreases at space for gluon emission by quarks as t increases, leading to loss of momentum. large x and increases at small x. Physically, this is due to increase in the phase This is clearly visible in data.

For flavour-singlet combination, define $\Sigma = \sum_i (q_i + \bar{q}_i)$. Then we obtain

$$\frac{\partial \Sigma}{\partial t} = \frac{\alpha_{\rm S}(t)}{2\pi} \left[P_{qq} \otimes \Sigma + 2N_f P_{qg} \otimes g \right]$$

$$\frac{\partial g}{\partial t} = \frac{\alpha_{\rm S}(t)}{2\pi} \left[P_{gq} \otimes \Sigma + P_{gg} \otimes g \right] .$$

Thus flavour-singlet quark distribution Σ mixes with gluon distribution g: evolution equation for moments has matrix form

$$trac{\partial}{\partial t}\left(egin{array}{c} ilde{\Sigma} \ ilde{g} \end{array}
ight) = \left(egin{array}{ccc} \gamma_{qq} & 2N_f\gamma_{qg} \ \gamma_{gq} & \gamma_{gg} \end{array}
ight) \left(egin{array}{c} ilde{\Sigma} \ ilde{g} \end{array}
ight)$$

Singlet anomalous dimension matrix has two real eigenvalues γ_{\pm} given by

$$\gamma_{\pm} = \frac{1}{2} \left[\gamma_{gg} + \gamma_{qq} \pm \sqrt{(\gamma_{gg} - \gamma_{qq})^2 + 8N_f \gamma_{gq} \gamma_{qg}} \right].$$

Expressing $\tilde{\Sigma}$ and \tilde{g} as linear combinations of eigenvectors $\tilde{\Sigma}_{+}$ and $\tilde{\Sigma}_{-}$, we find they evolve as superpositions of terms of above form with γ_{\pm} in place of γ_{qq} .

Small x

Therefore structure functions grow rapidly at small x. At small x, corresponding to $N \to 1$, we find $\gamma_+ \to \gamma_{gg} \to \infty$, $\gamma_- \to \gamma_{qq} \to 0$.

Higher-order corrections also become large in this region:

$$\gamma_{qq}^{(1)}(N) \rightarrow \frac{40C_F N_f T_R}{9(N-1)}$$
 $\gamma_{qg}^{(1)}(N) \rightarrow \frac{40C_A T_R}{9(N-1)}$
 $\gamma_{gq}^{(1)}(N) \rightarrow \frac{9C_F C_A - 40C_F N_f T_R}{9(N-1)}$
 $\gamma_{gg}^{(1)}(N) \rightarrow \frac{(12C_F - 46C_A)N_f T_R}{9(N-1)}$

Thus we find

Thus NLO corrections is relatively small. where neglected terms are either non-singular at N=1 or higher-order in α_s .

In general one finds (BFKL) that for small $x \ (N \to 1)$

$$\gamma_+ \to \sum_{n=1}^{\infty} \sum_{m=0}^{n} \frac{\gamma^{(n,m)}}{(N-1)^m} \left(\frac{\alpha_{\rm S}}{2\pi}\right)^n$$

 $\gamma^{(2,3)}$ and $\gamma^{(3,5)}$ are not zero. than the timelike (jet fragmentation) case, where we saw that $m \leq 2n-1$ and where it happens that $\gamma^{(2,2)}$ (and $\gamma^{(3,3)}$) are zero. This is much less singular

- * This is probably why significant deviations from NLO QCD have not yet been seen in DIS at small x, whereas they are obvious in jet fragmentation.
- * Crucial difference is coherence (angular ordering), which we saw suppresses spacelike branching in DIS. soft gluon emission in low-x fragmentation, but does not suppress low-x

Hadron-hadron processes

In hard hadron-hadron scattering, constituent partons from each incoming hadron interact at short distance (large momentum transfer Q^2).

For hadron momenta P_1, P_2 $(S = 2P_1 \cdot P_2)$, form of cross section is

$$\sigma(S) = \sum_{\hat{s},\hat{s}} \int dx_1 dx_2 D_i(x_1, \mu^2) D_j(x_2, \mu^2) \hat{\sigma}_{ij}(\hat{s} = x_1 x_2 S, \alpha_s(\mu^2), Q^2/\mu^2)$$

where μ^2 is factorization scale and $\hat{\sigma}_{ij}$ is subprocess cross section for parton types i, j.

- Notice that factorization scale is in principle arbitrary: affects only what we call part of subprocess or part of initial-state evolution (parton shower).
- \diamond Unlike e^+e^- or ep, we may have interaction between spectator partons, leading to soft underlying event and/or multiple hard scattering.

Lepton pair production

Inverse of $e^+e^- \to q\bar{q}$ is Drell-Yan process. At $\mathcal{O}(\alpha_s^0)$, mass distribution of lepton pair is given by

$$\frac{d\hat{\sigma}}{dM^2}(q\bar{q}\to\gamma^*\to l^+l^-) = \frac{4\pi\alpha^2}{\hat{s}}\frac{1}{3}Q_q^2\,\delta(M^2-\hat{s})$$

* Factor of 1/3 instead of 3 because of average over colours of incoming q.

- * In higher orders vertex corrections (a) have $M^2 = \hat{s}$, gluon emission (b) and QCD Compton (c) diagrams give $M^2 < \hat{s}$
- Rapidity of lepton pair in overall c.m. frame is $(p^{\mu} = p_1^{\mu} + p_2^{\mu})$ $y \equiv \frac{1}{2} \ln \left(\frac{p^0 + p^3}{p^0 - p^3} \right) = \frac{1}{2} \ln \left(\frac{x_1}{x_2} \right)$

 $u\bar{d} \to W^+ \to l^+\nu_l$

W[±] bosn production is similar, except sensitive to different parton distributions, 10⁻⁵ L 10⁻³ 10^{-4} 0 100 200 $\begin{array}{c} 300 & 400 \\ \text{M [GeV]} \end{array}$ 500

Transverse momentum of lepton pair, p_T , measures net transverse momentum of emitted partons plus any intrinsic p_T :

Jet production

 $p_1 + p_2 \rightarrow p_3 + p_4$ Lowest-order subprocess for purely hadronic jet production is $2 \rightarrow 2$ scattering

$$\frac{E_3 E_4 d^6 \hat{\sigma}}{d^3 \mathbf{p}_3 d^3 \mathbf{p}_4} = \frac{1}{32\pi^2 \hat{s}} \sum |\mathcal{M}|^2 \, \delta^4 (p_1 + p_2 - p_3 - p_4) \; .$$

Many processes even at $\mathcal{O}(\alpha_{_{\mathrm{S}}}^2)$:

For single-jet inclusive cross section, integrate over one outgoing momentum:

$$\frac{Ed^3\hat{\sigma}}{d^3\boldsymbol{p}} = \frac{d^3\hat{\sigma}}{d^2\boldsymbol{p}_T dy} \longrightarrow \frac{1}{2\pi E_T} \frac{d^3\hat{\sigma}}{dE_T d\eta} = \frac{1}{16\pi^2 \hat{s}} \sum_{\boldsymbol{q}} |\mathcal{M}|^2 \delta(\hat{s} + \hat{t} + \hat{u})$$

where (neglecting jet mass)

$$E_T \equiv E \sin \theta = |\mathbf{p}_T|, \quad \eta \equiv -\ln \tan(\theta/2) = y.$$

Jets in hadron-hadron usually defined using cone algorithm: combine all hadrons h with

$$\Delta R_{hJ} \equiv \sqrt{(\eta_h - \eta_J)^2 + (\phi_h - \phi_J)^2} < R$$

where η_J, ϕ_J refer to jet axis, chosen to maximize jet E_T , and $R \sim 0.7$ is cone

Use η rather than θ for invariance under longitudinal boosts: $x_1 \to ax_1$, $x_2 \rightarrow x_2/a$ gives

$$\eta_{h,J} \to \eta_{h,J} + \ln a$$

so $\eta_h - \eta_J$ is invariant.

 $d\sigma/dE_{T}$ [nb/GeV] 10-5 10-4 10-3 10-2 104 Theory-MRS(D0) partons statistical errors only CDF data on jet E_T distribution, $0.1<|\eta|<0.7$, R=0.7100 $E_{
m T} \left[{
m GeV}
ight]$ 300 400 ____

adjusting gluon distribution. Slight excess at large E_T caused excitement, but can be reduced/removed by

combinations ij determined by subprocess cross sections and parton distributions. Contribution of different parton

Quarks dominate at large E_T since this selects large $x_{1,2}$:

$$\hat{s} = x_1 x_2 S > 4E_T^2$$

Heavy quark production

Leading-order (LO) and next-to-leading-order (NLO) contributions:

In top quark production, NLO agrees with data.

Bottom quark production

For bottom quark production, NLO prediction is too low:

- Fit requires low b mass, low scale, high $\alpha_{\rm s}$
- * Higher orders, e.g. $\alpha_s^2 [\alpha_s \log(p_T/m)]^k$?
- * Bad b fragmentation model? (M Cacciari & P Nason)

Bottom quark production in Monte Carlos

3 types of processes contribute: flavour creation (FCR), gluon splitting (GSP), flavour excitation (FEX)

GSP

GSP and FEX are higher order, cutoff dependent, effectively enhancing NLO

[R Field, PRD65, 094006]

Avoid these problems by using MC@NLO, which matches Monte Carlo to NLO without double-counting [S Frixione, P Nason & BW, JHEP0308, 007]

Summary of Lecture 5

- Deep inelastic scattering (DIS) measures parton distribution functions, which show expected scaling violation.
- Small-x PDFs rise rapidly with increasing Q^2 or decreasing x, in contrast to splitting functions small-x fragmentation functions, due to different higher-order corrections to
- Hadron-hadron processes can be predicted from PDFs measured in DIS using factorization
- * Lepton pair production (Drell-Yan process)
- \diamond Jet production (QCD 2 \rightarrow 2 scattering)
- \bullet Heavy quark production $(t\bar{t} \& bb)$