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An updated formulation of soft diffraction, compatible with unitarity is presented. Its

consequent soft scattering features are explored. The critical interplay between theory and

and data analysis will be discussed.

1 Introduction

The present vigorous studies of soft scattering and Pomeron (IP ) physics are based on sophis-
ticated utilisation of relatively old theoretical ideas and models, such as Gribov’s Reggeon field
theory [1], Good and Walker (GW) decomposition of the proton wave function accounting for
low mass diffraction [2] and the eikonal approximation [3] which secures the compatibility of
the scattering amplitudes with s channel unitarity. Compliance with t channel unitarity is
associated with multi Pomeron interactions (IP enhancement) which are a generalisation of
Mueller’s triple Pomeron mechanism [4] provided G3IP , the triple Pomeron coupling, is large
enough. This mechanism supplements GW diffraction with an additional high mass diffraction.

In this talk I shall discuss the modelling and predictions derived from the above dynamical
considerations, stressing the critical interplay between theory and data analysis. The implied
gap survival probabilities will be discussed by Gotsman in the following talk. I shall assume a
Regge like parametrisation in which the IP is super critical, i.e. αIP (t) = 1 + ∆IP + α′

IP t, where
∆IP > 1. The above IP exchange violates s-unitarity at high energies. Recall that implementing
s-unitarity is model dependent. I shall confine myself to eikonal models which have the virtue
of simplicity.

In the ISR-Tevatron range σtot and σel are well reproduced by Donnachie-Landshoff (DL)
non screened Regge parametrisation with ∆IP = 0.08 and α′

IP = 0.25 GeV−2. The energy
dependence of the soft diffractive cross sections (notably σsd) is much milder, implying that
strong screenings initiated by s-unitarity must be taken into account. As we shall see, the
interplay between theory and data analysis results in strong constraints on both ∆IP and α′

IP

inputs. This results has profound consequences for the nature of the Pomeron and its QCD
foundations, suggesting a unifying interpretation of soft and hard Pomerons.
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2 Good-Walker Eikonal Models

Consider a system of two states, a hadron Ψh and a diffractive state ΨD which are orthonormal.
The GW mechanism stems from the observation that these states do not diagonalise the 2x2
interaction matrix T. Lets introduce two wave functions Ψ1 and Ψ2 which diagonalise T,

Ai′,k′

i,k =< Ψi Ψk|T|Ψi′ Ψk′ >= Ai,k δi,i′ δk,k′ . (1)

i.e. the Ai,k amplitudes are constructed from the elastic scattering of Ψi and Ψk. In this
representation the observed hadronic states are written

Ψh = α Ψ1 + β Ψ2 ΨD = −β Ψ1 + α Ψ2 , (2)

where α2 + β2 = 1. The corresponding unitarity equations are

Im AS
i,k (s, b) = |AS

i,k (s, b) |2 + Gin
i,k(s, b), (3)

where Gin
i,k is the summed probability for all non GW inelastic processes induced by an initial

(i, k) state. A general solution of Eq. (3) can be written as

AS
i,k(s, b) = i

(

1 − exp

(

−
ΩS

i,k(s, b)

2

))

, (4)

Gin
i,k(s, b) = 1 − exp

(

−ΩS
i,k(s, b)

)

, (5)

where ΩS
i,k are arbitrary. In the eikonal approximation ΩS

i,k are assumed to be real and deter-
mined by the Born (non-screened) input. From Eq. (5) we deduce that the probability that the
initial projectiles (i, k) reach the final LRG diffractive interaction unchanged, regardless of the
initial state re-scatterings, is given by P S

i,k = exp (−ΩS
i,k(s, b)). In general, we have to consider

four possible (i, k) elastic re-scattering options. For initial p-p (or p̄-p) the two off diagonal
amplitudes are equal, AS

1,2 = AS
2,1. The corresponding elastic, SD and DD amplitudes are

ael(s, b) = i{α4AS
1,1 + 2α2β2AS

1,2 + β4AS
2,2}, (6)

asd(s, b) = iαβ{−α2AS
1,1 + (α2 − β2)AS

1,2 + β2AS
2,2}, (7)

add = iα2β2{AS
1,1 − 2AS

1,2 + AS
2,2}. (8)

The GW mechanism was originally conceived so as to describe a system of a nucleon plus
its diffractive N∗ isobars. Obviously, this simplistic approach is not suitable for high energy
diffraction where M2

diff is bounded by 0.05s 1, implying a continua of diffractive Fock states.
Throughout this talk I shall relate to GLMM [5] and KMR [6] models which are conceptu-
ally very similar, but differ significantly in both their formalism and data analysis. In the
present context, two procedures were devised to overcome the above difficulty: GLMM lump
together all GW diffractive states to an effective |D > state, to which we add the non GW IP
enhanced high mass diffraction. In this approach the GW contribution is very significant and
the mass distribution is smooth. KMR and LKMR [7] chose to confine GW diffraction to low

1this is an arbitrary bound commonly used.



M2
diff < 10 GeV2, to which they add the high mass IP enhanced contribution. In this ap-

proximation the bulk of the diffractive mass is non GW, and its smoothness at 10 GeV2 is not
secured.

GLMM, KMR and LKMR are multi channel eikonal models in which the initial re-scatterings
of the incoming projectiles includes also GW diffractive states.

ΩS
i,k (s, b) = νS

i,k (s) ΓS
i,k (s, b, ...) , (9)

where νS
i,k(s) = gigk( s

s0

)∆IP and ΓS
i,k are the b-space profiles. The profiles are external informa-

tion in as much as, beside their normalization and asymptotic constraints on their behaviour,
they are determined by the data analysis. In GLMM ΓS

i,k are given as the b-transform of a two

t-poles expression (t = −q2). Setting α′

IP =0, the profiles are energy independent

1

(1 + q2/m2
i )

2
×

1

(1 + q2/m2
k)2

=⇒ ΓS (b; mi, mk; α′

IP = 0) . (10)

GLMM introduce a small energy dependence

m2
i =⇒ m2

i (s) ≡
m2

i

1 + 4m2
i α

′

IP ln(s/s0)
. (11)

The above parametrisation is compatible with the requirements of analyticity/crossing symme-
try at large b, pQCD at large q2 and Regge at small q2. For details see Ref. [5]. KMR and
LKMR use a different parametrisation for ΓS

i,k which is numerically compatible with GLMM.

The 3 groups reproduce dσel/dt well in the forward t < 0.5 GeV2 cone.

Consider a model in which diffraction is exclusively GW. This was recently considered by
GLMM and LKMR. These, as well as earlier KMR GW models, fit the (different) elastic sectors
of their data bases, obtaining output fitted ∆IP = 0.10− 0.12 with χ2/d.o.f. < 1.0. The above
GW models fail to reproduce the diffractive sectors of their data bases. This deficiency is traced
to the need to add the enhanced IP high mass contributions. This has been done in GLMM
and KMR. LKMR model is confined to Muller’s 3IP approximation.

3 Multi Pomeron Interactions

Consider a single diffraction channel p + p → p + Msd. Mueller’s triple Pomeron mechanism,
derived from 3 body unitarity, leads to high SD mass which is non GW. In the leading order

M2
sd

dσ3IP

dt dM2
sd

=
1

16π2
g2

p(t)gp(0)G3IP (t)

(

s

M2
sd

)2∆IP +2α′

IP
t(

M2
sd

s0

)∆IP

. (12)

The virtue of Eq. (12) is that ∆IP can be determined from either the energy or mass dependences
of the SD cross sections. This approximation is valid for s � M 2

sd � m2
p.

CDF analysis suggests [8] a relatively large value of G3IP . Consequently, we need to consider
a very large family of multi Pomeron interactions (enhanced IP ) which are not included in the
GW mechanism. As we shall see, this “new” dynamical feature initiates profound differences
in the calculated values of soft cross sections and induces additional non GW diffractive gap



survival probabilities (soft and hard). Note that these features become significant above the
Tevatron energy.

GLMM and KMR treatment of IP enhanced interactions stems from Gribov [1] and Kaidalov
et al. [9] classical papers on Reggeon calculus. Recall that in this context the soft Pomeron is
a simple pole in the J-plane, while the hard (BFKL) Pomeron is a branch cut. KMR model,
which is a partonic model, derives directly from these sources. Its summation is confined to semi-
enhanced IP diagrams (see Fig. 1b). KMR calculations are based on two ad hoc assumptions:
1) The coupling of a multi IP point vertex nIP → mIP (n + m > 2) is gn

m = 1

2
gNnmλn+m−2.

In this notation G3IP = λgN . Note that in Kaidalov et al. gn
m = 1

2
gNλn+m−2.

2) Most of LHC non GW diffractive reactions of interest are hard. Given a 3IP vertex, G3IP is
unchanged by the interchange of soft and hard Pomerons. This is not self evident. A possible
support for the above is obtained from GLMM interpretation of the Pomeron (see below).

a) b)

Figure 1: Low order terms of the Pomeron
Green’s function. a) Enhanced. b) Semi-
enhanced.

As we shall see in the next chapter, the data
analysis executed by GLMM and KMR converges
to compatible exceedingly small α′

IP values and
high, BFKL like, ∆IP ' 0.30 − 0.35. The ad-
justments of these parameters are correlated. In
non screened Regge model ∆IP controls the elastic
cross section energy dependence, while α′

IP con-
trols the energy dependence of the (shrinking)
elastic slope. As α′

IP gets smaller ∆IP becomes
larger initiating stronger screening which compen-
sates the reduction of α′

IP , and vice versa. As we
saw, the vanishing value of the fitted α′

IP was in-
duced by the GLMM and KMR b-profiles chosen
so as to reproduce the elastic differential cross sec-
tion. These results have profound implications:
1) A key observation of GLMM is that the exceedingly small fitted value of α′

IP implies that the
“soft” IP is hard enough to be treated perturbatively. Following Gribov we identify the corre-
lation between α′

IP and 〈pt〉, the mean transverse momentum of the partons (actually, colour
dipoles) associated with the IP . 〈pt〉 = 1/

√

α′

IP , from which we deduce that the QCD running
coupling constant αS � 1. Accordingly, we proceed from Gribov’s parton model interpretation
to pQCD. GLMM sum over the enhanced diagrams. Technically, we have adopted the MPSI
procedure [10] in which gn

m is reduced to a sequence of triple IP vertexes (Fan diagrams). For
details see Ref. [5]. This may pose a problem for the calculation of SD cross section for which
the lowest order diagram is semi enhanced. To avoid this problem we have added to this cal-
culation a term by term summation of the relevant semi enhanced diagrams.
2) The fitted high value of ∆IP initiates strong screening which results in a renormalisation of

the Pomeron exchange amplitudes. As a result ∆eff
IP is reduced monotonically with energy. In

GLMM calculations ∆eff
IP (2 TeV) ' 0.070, ∆eff

IP (14 TeV) ' 0.045 and ∆eff
IP (60 TeV) ' 0.032.

KMR results are compatible with ours, see Table 2. The slow decrease of ∆eff
IP raises the

question if its value may become negative at high enough energies, larger than W = 105 GeV
which is the bound of validity of both GLMM and KMR. In GLMM we have checked that
∆eff

IP (100 TeV) > 0. I am less clear about KMR. The compatibility between GLMM and KMR
is surprising. As noted, GLMM sum over the enhanced diagrams (Fig. 1a) while KMR sum
over the semi enhanced diagrams (Fig. 1b). Very intuitively (at the risk of being wrong), it



seems that GLMM renormalise the IP propagator while KMR renormalise the IP vertex. A
complete calculation should, obviously, include both contributions.

4 The Interplay Between Theory and Data Analysis

The data analysis of interest aims to adjust the theoretical parameters. To this end we con-
struct:
1) A suitable data base adjusted, so as to fix the parameters with a satisfactory resolution.
2) An adjustment procedure, be it a fit (GLMM, LKMR) or tuning by trial and error (KMR).
3) We distinguish between an adjustment of all free parameters which is executed through a
reconstruction of the entire data base in one step (GLMM), and a two steps (KMR, LKMR)
procedure, in which the first step determines the GW free parameters by adjusting the elastic
sector of the data base. These parameters are fixed in the second step in which the rest of the
free parameters are determined.
There is a significant difference between the data analysis carried out by GLMM and KMR.
This reflects both in the choices of data bases made by the two groups and their adjustment
procedures. The starting point of both investigations is the observation that a GW model repro-
duces the elastic data well, but its reproduction of the diffractive sector is deficient. Both groups
claim to achieve an improved reproduction of their over all data base once the contributions of
enhanced Pomeron diagrams are included.

GLMM have constructed a global data base so as to simultaneously fit all its free parame-
ters. It includes σtot, σel, σsd, σdd and Bel in the ISR-Tevatron range, CDF differential elastic
cross sections and SD mass distribution were checked for consistency. The conceptual approach
of KMR and LKMR is completely different. Their data base contains only the measured values
of dσel/dt, which enables to predict σtot, and dσsd/dt d(M2

sd/s). In my opinion KMR data base
is too limited to enable a substantiation of their premises. Specifically:
1) As we saw, the b-profiles ΓS

i,k control the features of dσel/dt which are only weakly cou-
pled to the proposed dynamics. I have checked 6 models, published over the last 10 years
(3KMR+LKMR+2GLMM) with different dynamics, i.e., exclusive GW (GLMM, LKMR),
GW+zero order IP enhancement (LKMR) and GW+IP enhancement (GLMM+2KMR). The
output fitted parameters spread over 0.1 ≤ ∆IP ≤ 0.55 and 0 ≤ α′

IP ≤ 0.066. All 6 models
reproduce, almost identically, the CDF distributions of dσel/dt with |t| ≤ 0.5 GeV2. The un-
avoidable conclusion is that a reconstruction of dσel/dt on its own has no resolution power. The
only common ingredient to all 6 models is their compatible b-profiles. These profiles constrain
α′

IP to very small values. This is the key observation leading to a pQCD (GLMM) or partonic
(KMR) IP interpretation.
2) The reconstructions of CDF dσsd/dt d(M2

sd/s) by GLMM, LKMR and KMR, are remarkably
similar. They support the introduction of high mass multi Pomeron interactions. In my opin-
ion, though, this investigation, in its present state state, is unable to provide a decisive verdict
on this issue. GLMM and KMR sum different sectors of the enhanced diagrams. LKMR take
into account only the lowest order Mueller’s 3IP diagram. Regardless of these differences, the
three groups produce compatible output results which indicate that CDF data, as is, is not
sufficient to differentiate between different modes of IP enhanced diagram summations.
3) To further clarify the experimental limitations, let us recall that CDF non conventionally

define their high mass diffraction bound at 1 − xL =
M2

sd

s
≤ 0.15 (the common bound is 0.05).



KMR and LKMR define a lower bound M 2
sd > 10 GeV2 which corresponds to 1−xL = 3 ·10−6.

Note that CDF SD mass distribution available for analysis corresponds to 1−xL > 3·10−3. This
mass distribution covers less than 35% of the expected high diffractive mass spectra. GLMM
have a completely different classification in which the GW low mass diffraction reduces mono-
tonically with no arbitrary upper bound and the high mass is defined above 10 GeV2, identical
to KMR. Additional difficulty with the analysis of CDF data with 1−xL > 0.03 is that a large
arbitrary background contribution has to be added. It is induced by secondary Regge diagrams
such as IPIPR. An added element of ambiguity is that LKMR with a zero order 3IP calculation
is as successful as the high order summations of GLMM and KMR.

α′

IP g1 g2 m1 m2

∆IP β GeV−2 GeV−1 GeV−1 GeV GeV χ2/d.o.f.
GW 0.120 0.46 0.012 1.27 3.33 0.913 0.98 0.87

GW+IP − enh. 0.335 0.34 0.010 5.82 239.6 1.54 3.06 1.00

Table 1: Fitted parameters for GLMM GW and GW+IP -enhanced models.

GLMM fitting procedure aims to reproduce our global data base. A fit with a GW model
(no IP -enh) provides excellent reproduction of our elastic sector while the the reproduction of
the diffractive sector is very poor! The repeated fit with a GW+IP -enh model results with
a very good χ2. The outputs of both models are presented in Table 1. Checking we note
that the exceedingly small value of α′

IP is persistently obtained in both models. The outputs
of ∆IP and g2 change drastically once IP -enh is included. As we shall see this has significant
consequences for the approach of ael(s, b) toward the black disc bound. As we have noted, KMR
and LKMR tune g1 and g2 through a reproduction of dσel/dt which are frozen in the next phase
reproduction of dσsd/dt d(M2

sd/s). The values they obtain for ∆IP and α′

IP are compatible with
GLMM.

Tevatron LHC W=105 GeV
GLMM KMR(07) KMR(08) GLMM KMR(07) KMR(08) GLMM KMR(07) KMR(08)

σtot 73.3 74.0 73.7 92.1 88.0 91.7 108.0 98.0 108.0
σel 16.3 16.3 16.4 20.9 20.1 21.5 24.0 22.9 26.2
σsd 9.8 10.9 13.8 11.8 13.3 19.0 14.4 15.7 24.2
σdd 5.4 7.2 6.1 13.4 6.3 17.3

Table 2: Comparison of GLMM, KMR(07) and KMR(08) cross sections in mb.

GLMM and KMR high energy Tevatron, LHC and Cosmic Rays predicted cross sections
are summarised in Table 2. The elastic and total cross section outputs of the two models are
compatible and, above the Tevatron, significantly lower than those obtained in models with no
multi-Pomeron contributions. This is a consequence of ∆IP renormalization due to the enhanced
IP contributions. GLMM and KMR(07) predicted σsd are compatible, where KMR(07) are sys-
tematically larger by approximately 10%. KMR(08) predicted σsd are considerably larger than
GLMM as well as KMR(07) and are growing at a faster rate. The difference between KMR(07)
and GLMM σdd predictions is even more dramatic, where σdd(KMR(07))/σdd(GLMM) ' 3 at
W = 105 GeV. This very large difference is due to KMR large diffractive high mass predictions.
The recent KMR(08) neglects to mention the high diffractive mass sector of double diffraction
while showing higher SD cross sections than in KMR(07).



In my opinion the GLMM and KMR compatible predictions of total and elastic cross sec-
tions at the LHC and AUGER are of fundamental importance because they are significantly
lower than the predicted values based on unitarity models with no IP enhancement. These mea-
surements may provide a decisive support for the importance of multi-Pomeron interactions at
high enough energies and, consequently, imply that the growth of the total and elastic cross
sections with energy is much more moderate than anticipated. This feature reflects in the slow
decrease of ∆eff

IP shown in Sec 3.

5 The Approach Toward the Black Disc Bound

The base amplitudes of GLMM are AS
i,k , with b dependences specified in Eq. (10) – Eq. (11).

These are the building blocks with which we construct ael, asd and add (Eq. (6) – Eq. (8)).
The AS

i,k amplitudes are bounded by the black disc unitarity limit of unity. Checking GLMM
fitted parameters, presented in Table 1, we observe that g1 and g2, which are comparable in
the GW model, significantly change in the GW+IP enhanced model where we obtain g2 >> g1.
The implication of of our fitted values of g1 and g2, is that including the diffractive data in
our global fit forces a large inequality between the three GW AS

i,k components. AS
2,2(s, b = 0)

reaches unity at a very low energy, AS
1,2(s, b = 0) reaches unity at approximately W = 100GeV

and AS
1,1(s, b = 0) reaches unity at exceedingly high energies, well above LHC. The observation

that one, or even two, of our AS
i,k(s, b) = 1 does not imply that the elastic scattering amplitude

has reached the unitarity bound at these (s, b) values. ael(s, b) reaches the black disc bound
when, and only when, AS

1,1(s, b) = AS
1,2(s, b) = AS

2,2(s, b) = 1, independent of β. The approach

of ael(s, b = 0) toward the black bound depends on the rate at which AS
1,1(s, b) increases with

energy. Recall that this increase above LHC becomes ever so moderate as a consequence of
the renormalization reduction of ∆IP . This feature coupled to the smallness of g2

1 implies that
ael(s, b) will reach the black bound at energies well above the LHC. Our results are different
from the predictions of most available models, notably KMR, in which ael(s, b = 0) reaches
unity a few TeV above LHC. Note, though, that GLMM is the only model which includes the
diffractive along side the elastic data in its data analysis. All models which predict saturation of
ael(s, b = 0) just above LHC have confined their data analysis exclusively to the elastic sector.

A consequence of the input ΩS
i,k being very large at small b, is that P S

i,k(s, b) is exceedingly
small at these small b values. As a result, given a diffractive (non screened) input, its output
(screened) amplitude is peripheral in b. This is a general feature, common to all eikonal mod-
els regardless of their b-profiles details. The general behaviour indicated above becomes more
extreme at ultra high energies, where ael continues to get darker and expand. Consequently,
the inelastic diffractive channels (soft and hard) becomes more and more peripheral and rela-
tively smaller when compared with the elastic channel. Given (s, b) at which ael(s, b) = 1, the
corresponding diffractive amplitudes, GW and non GW, vanish.

The behaviour of the ratio RD = (σel + σsd + σdd)/σtot conveys information regarding
the onset of s-unitarity at very high energies. Assuming diffraction to be exclusively GW, we
obtain [11] RD ≤ 0.5. Multi IP induced diffraction is not included in RD since it originates from
Gin

i,k. Hence its non screened high mass cross section is suppressed by its survival probability
which decreases with energy. In GLMM RD < 0.5, decreasing slowly. In KMR(07) RD > 0.5,
increasing slowly with energy. The partial information available on KMR(08) suggests that its
RD grows even faster.



6 Conclusions

This presentation centred on the phenomenology implied by multi Pomeron dynamics incorpo-
rated in soft diffraction and its consequences for soft scattering.

The concept of IP enhancement was triggered, at the time, by the assessment that G3IP is
not too small. Our view of the Pomeron got more focused with the updated data analysis of
soft scattering in which we get ∆IP ' 0.30− 0.35 and α′

IP ' 0.01. The implied KMR Pomeron
is hard enough to be treated partonically, in which the traditional classification of the soft IP
as a simple J-pole and the hard IP as a branch cut in the J-plane is maintained. GLMM went
further ahead identifying the soft IP with the hard IP . This is, clearly, a fundamental theoretical
issue which should be further investigated.

As it stands this dynamics is compatible with the data, but we can not support it, as
yet, with a decisive signature. A GLMM and KMR prediction is the expected significant
reduction, compared with non screened predictions, of σtot and σel at the LHC. In my opinion
this measurement is of a critical value.

Decisive experimental signatures of IP -enh are expected, essentially, above the Tevatron.
Consequently, we should be prudent when evaluating phenomenological models which reproduce
the Tevatron data well. This is, obviously, required of a successful model, but is definitely not
sufficient.
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