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We discuss the main features and predictions of the GLMM model, which is based on a

QCD motivated theoretical approach, and successfully describes the experimental data on

total, elastic and diffractive cross sections. In addition we calculate the survival probability

for a SM Higgs at the LHC, and compare our results with those of the Durham group.

1 Introduction

Over the past few years the subject of “soft physics” has reemerged from the shadows, and
has aroused the interest of the phenomenological community. This in no small way, due to
the realization that the calculation of the probability of detecting a diffractive hard pQCD
process e.g. Higgs production at the LHC, also depends on the underlying secondaries which
are produced by “soft” rescattering. Central diffractive production e.g. (Higgs boson, 2 jets,
2 γ’s, χc), are accompanied by gaps in rapidity, between the two outgoing projectiles, and the
centrally produced particles, which makes their detection easier. The subject of the survival
of these rapidity gaps was initiated over twenty years ago [1], and has been refined over the
interim period [2, 3].

2 Details of our Model

The details on which our two channel (GLM) model is based i.e. the Good-Walker (G-W)
mechanism [4] can be found in [2]. See also U. Maor’s talk in these proceedings. It is well known
that G-W neglects the diffractive production of large mass states (Mueller diagrams [5]), and
to successfully describe the diffractive data, these need to be included by adding the relevant
triple Pomeron contributions (see l.h. diagrams in Fig. 1). In addition it is also necessary to
include diagrams containing Pomeron loops, as shown in the r.h. diagrams in Fig. 1.

To simplify the problem of summing the Pomeron loop diagrams, we assume that at high
energies only the triple Pomeron interaction is essential, this conjecture has been proved in per-
turbative QCD (see Refs. [6, 7]). Mueller [8] has shown that in the leading log x approximation
of pQCD for a large number of colours (Nc � 1), the correct degrees of freedom are colourless
dipoles.
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Figure 1: L.h. figure: Examples of Pomeron diagrams not included in G-W mechanism. R.h.
figure: Low order terms of the Pomeron Green’s function. a) Enhanced. b) Semi-enhanced.

2.1 Summing Interacting Pomeron Diagrams

In the leading order approximation of pQCD, only one Pomeron (dipole) splitting into two
Pomerons (dipoles), and two Pomerons (dipoles) merging into one Pomeron (dipole) are con-
sidered. All other Pomeron vertices do not appear in the leading log x approximation of pQCD.
We therefore restrict ourselves to sum only Pomeron diagrams containing triple Pomeron ver-
tices. We add a caveat, that we neglect the 4IP term (which is needed for s channel unitarity),
however, this term is only significant at energies W > 105 , which is at the limit of the validity
of our model.

To make the calculation tractable we further assume that the slope of the Pomeron trajectory
α′

IP = 0. The results of our numerical fit to the relevant data, which we will discuss later,
(α′

IP = 0.01) lends credence to this assumption.
The theory which includes all the above ingredients can be formulated in terms of a gener-

ating function [9, 10]

Z(y, u) =
∑

n

Pn(y) un, (1)

where, Pn(y) is the probability to find n-Pomerons (dipoles) at rapidity y. At rapidity y =
Y = ln(s/s0) we can impose an arbitrary initial condition. For example, demanding that there
is only one fastest parton (dipole), which is P1(y = Y ) = 1, while Pn>1(y = Y ) = 0. In this
case we have the following initial condition for the generating function

Z(y = Y ) = u . (2)

At u = 1
Z(y, u = 1) = 1, (3)

which follows from the physical meaning of Pn as a probability. The solution, with these two
conditions, will give us the sum of enhanced diagrams.

For the function Z (u) the following simple equation can be written (see Ref. [2] and refer-
ences therein)

−
∂ Z(y, u)

∂ Y
= −Γ(1 → 2) u (1 − u)

∂ Z(y, u)

∂ u
+ Γ(2 → 1) u (1 − u)

∂2 Z(y, u)

∂2 u
, (4)



where, Γ(1 → 2) describes the decay of one Pomeron (dipole) into two Pomerons (dipoles),
while Γ(2 → 1) relates to the merging of two Pomerons (dipoles) into one Pomeron (dipole).

Using the functional Z, we calculate the scattering amplitude [10, 11], using the following
formula:

N (Y ) ≡ ImAel (Y ) =

∞
∑

n=1

(−1)n

n!

∂n Z(y, u)

∂n u

∣

∣

∣

∣

u=1

γn(Y = Y0, b), (5)

where, γn(Y = Y0, b) is the scattering amplitude of n-partons (dipoles) at low energy.
The generating function approach has the advantage that it can be solved analytically (see

Ref. [12]), using the MPSI [13] approximation. The exact expression for the Pomeron Green’s
function is given by

GIP (Y ) = 1 − exp

(

1

T (Y )

)

1

T (Y )
Γ

(

0,
1

T (Y )

)

, (6)

where Γ (0, x) is the incomplete gamma function, and T (Y ) = γ e∆IP Y . γ denotes the am-
plitude of the two dipole interaction at low energy. The MPSI approximation only takes into
account the first term of the expression of the enhanced diagrams, neglecting other terms, as
they are suppressed as e−∆Y . Consequently, this approximation is only reliable in the region
Y ≤ min[ 1

γ
, 1

α′

IP
m2

i

].

3 Determining the Parameters of the Model and Results

of the Fit

The pertinent details of our fit to the experimental data, and our determination of the relevant
parameters of the model, needed to describe the soft interactions, are contained in [2]. In
this section we only mention the salient features, and results of the fit. Our fit is based on

α′

IP g1 g2 m1 m2

∆IP β GeV−2 GeV−1 GeV−1 GeV GeV χ2/d.o.f.
GW 0.120 0.46 0.012 1.27 3.33 0.913 0.98 0.87

GW+IP − enh. 0.335 0.34 0.010 5.82 239.6 1.54 3.06 1.00

Table 1: Fitted parameters for GLMM GW and GW+IP -enhanced models.

55 experimental data points, which includes the p-p and p̄-p total cross sections, integrated
elastic cross sections, integrated single and double diffraction cross sections, and the forward
slope of the elastic cross section in the ISR-Tevatron energy range. The model gives a good
reproduction of the data, with a χ2/d.o.f. ≈ 1. In addition to the quantities contained in the
data base, we obtain a good description of the CDF [14] differential elastic cross sections and
the single diffractive mass distribution at t = 0.05 GeV2. An important advantage of our
approach, is that the model provides a very good reproduction of the double diffractive (DD)
data points. Other attempts to describe the DD data e.g. (see Refs. [15, 3]), were not successful
in reproducing the DD experimental results over the whole energy range.

In Table 1 we list the values of the parameters obtained by a least squares fit to the experi-
mental data, both for the G-W formalism (elastic data only), and for the G-W formalism plus
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Figure 2: Energy dependence of GLMM cross sections.

enhanced graphs (elastic plus diffractive data). In Table 2 we compare our results with results
of the two versions of the model proposed by the Durham group [15, 3]. In Fig. 2 we display
the predictions of the GLMM model’s values for the various cross sections. Note that σel and
σsd have completely different energy dependence, unlike the predictions of [3]. At an energy of
7 TeV the predictions of GLMM are (in mb): σtot= 86.0, σel= 19.5, σsd= 10.7, σdd = 5.9 and
the forward slope Bel = 19.4GeV−2.

Tevatron LHC W=105 GeV
GLMM KMR(07) KMR(08) GLMM KMR(07) KMR(08) GLMM KMR(07) KMR(08)

σtot 73.3 74.0 73.7 92.1 88.0 91.7 108.0 98.0 108.0
σel 16.3 16.3 16.4 20.9 20.1 21.5 24.0 22.9 26.2
σsd 9.8 10.9 13.8 11.8 13.3 19.0 14.4 15.7 24.2
σdd 5.4 7.2 6.1 13.4 6.3 17.3
σel+σdiff

σtot
0.43 0.46 0.42 0.53 0.41 0.57

Table 2: Comparison of GLMM, KMR(07) and KMR(08) cross sections in mb.

4 Survival Probability for Central Diffractive Production

of the Higgs Boson

A general review of survival probability calculations can be found in [16]. We denote by 〈| S2 |〉
the probability that the Large Rapidity Gap (LRG) survives, and is not filled by secondaries
from eikonal and enhanced rescattering effects (see Fig. 3). The expression for the survival

probability can be written 〈| S2
2ch |〉 = N(s)

D(s) where

N(s) =
∫

d2 b1 d2 b2

[

∑

i,k < p|i >2< p|k >2 Ai
H (s, b1) Ak

H(s, b2)(1 − Ai,k
S ((s, (b1 + b2)))

]2

,

and

D(s) =
∫

d2 b1 d2 b2

[

∑

i,k < p|i >2< p|k >2 Ai
H(s, b1) Ak

H(s, b2)
]2

AS(b, s) denotes the “soft” strong amplitude of our model [2]. While for the “hard” am-
plitude AH(b, s), we assume an input Gaussian b dependence. i.e. AH

i,k = AH(s) ΓH
i,k(b)
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Figure 3: a) the survival probability in the G-W mechanism, b) illustrates the origin of the
additional factor 〈| S2

enh |〉.

with ΓH
i,k(b) = 1

π(RH
i,k

)2
e
−

2 b2

(RH
i,k

)2 . The “hard” radii are constants determined from HERA

data on elastic and inelastic J/Ψ production. We introduce two hard b-profiles App
H (b) =

Vp→p

2πBH
el

exp
(

− b2

2 BH
el

)

, and Apdif
H (b) =

Vp→dif

2πBH
in

exp
(

− b2

2BH
in

)

. The values BH
el =5.0GeV−2 and

BH
in=1 GeV−2 have been taken from ZEUS data. The value BH

el = (3.6) GeV−2 was used in [2],
this has now been changed in light of the latest measurements of the “hard” slope, by the H1
group. This is in contrast to KMR treatment [15] where they assume: App

H (b) = Apdif
H (b) ∝

exp
(

− b2

2BH

)

with BH
el = BH

inel = 4 or 5.5 GeV−2 The sensitivity of our results to the param-

eters of the “hard” amplitude are shown in Fig. 4 (left), note that for BH
in =1 GeV−2, changing

the value of BH
el from 3.6 to 5.0 GeV−2, increases 〈| S2

2ch |〉 by ≈ 70 % . Our results for 〈| S2 |〉
= 〈| S2

2ch |〉 x 〈| S2
enh |〉 is given by the full line in Fig. 4 (right), it decreases with increasing

energy, due to the behaviour of 〈| S2
enh |〉.

Our results and the Durham group’s results for Survival Probability are given in Table 3. At

Tevatron LHC (14 TeV) W=105 GeV
GLMM KMR(07) KMR(08) GLMM KMR(07) KMR(08) GLMM KMR(07) KMR(08)

S2
2ch(%) v 5.3 2.7-4.8 3.9 1.2-3.2 3.2 0.9-2.5

S2
enh(%) 28.5 100 6.3 100 33.3 3.3 100

S2(%) 1.51 2.7-4.8 0.24 1.2-3.2 1.5 0.11 0.9-2.5

Table 3: Comparison of results obtained for Survival Probability in Tel Aviv and Durham
models

an energy of 7 TeV we predict a value 〈| S2 |〉 ≈ 0.6%. We have also succeeded in summing the
semi-enhanced contribution (see r.h. side of Fig. 1) to the Survival Probability, and find that
it is almost energy independent, and has a value ≈ 100% at Tevatron and LHC energies [17].

5 Discussion and Conclusions

We present a model for soft interactions having two components: (i) G-W mechanism for
elastic and low mass diffractive scattering, and (ii) Pomeron enhanced contributions for high
mass diffractive production. In addition we find from our fit that the slope of the Pomeron
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α′

IP ≈ 0.01. This is consistent with what one expects in pQCD, since for a BFKL Pomeron

α′

IP ∝ 1/Q2
s → 0 as s → ∞. Having α

′

IP → 0, provides a necessary condition that links
strong (soft) interactions with the hard interactions described by pQCD. A key hypothesis in
our model is that the soft processes are not “soft”, but originate from short distances. We have
only one Pomeron. There is no requirement for a “soft” and “hard” Pomeron. This is in accord
with Hera data for F2, which is smooth throughout the transition region [18].

To illustrate our achievements and problems, we compare our approach with the work of
the Durham group [15, 3]. The main difference in the underlying philosophy of the two groups
is that, the Durham approach is based on the parton model where there is only a short range
rapidity interaction between partons, while we, due to exchange of gluons in QCD, have a long
range rapidity interaction. Both approaches consider α′

IP as being small. In both programs
the Pomeron interaction was taken into account. The difference between the two approaches is
that KMR made an ad hoc “reasonable” assumption, that the multi-Pomeron vertices have the
following form, for the transition of n Pomerons to m Pomerons

gn
m = n m λn+m−2 gN/2 = n m λn+m−3 g3IP /2. (7)

No theoretical arguments or theoretical models were offered in support of this assumption,
which certainly contradicts the pQCD approach [6, 7]. In spite of these differences, the values
obtained for the σtot and σel are in surprisingly close agreement (see Table 2). It is only in the
latest version of the Durham model [3], which includes three components of the Pomeron, with
different transverse momenta of the partons in each component (to mimic BFKL diffusion in kt),
that there are fairly large discrepancies in the diffractive sector i.e. σsd and σdd. KMR [3] find
that at higher energies σsd and σel have comparable values and similar energy dependence, this
is not so in our description [2] (see Fig. 2). We note that the results presented by Poghosyan at
this conference for σsd and σdd [19] agree both in magnitude and energy dependence with those
obtained in the GLMM model. There is also disagreement in the result for the calculation of



the Survival Probability. In [3], the Survival Probability is now multiplied by a “renormalizing”
factor (〈p2

t 〉B)2 and referred to as 〈S2
eff 〉. The result for LHC energy is 〈S2

eff 〉 = 0.015+0.01
−0.005. It

is not clear whether there is in addition a factor of 〈S2
enh〉 ≈ 1/3, that needs to be incorporated.

If affirmative, then the discrepancy between our result and that of the Durham group for 〈S2〉
at Tevatron energies is small, but the discrepancy becomes larger for the LHC energy range, as
we predict that 〈S2

enh〉 decreases as the rapidity between the projectiles increases, while Durham
claim little (if any) energy dependence for 〈S2

enh〉.
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