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There exist significant global fluctuations of the strength of interaction of a fast 
nucleon, for example due to fluctuations of the size /orientation 

Direct measure of these fluctuation is diffraction at small t.
- Pomeranchuk & Feinberg, Good and Walker, Pumplin  &Miettinen (in QCD this 
logic is reasonable for total cross sections and for diffraction at  very small t)
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Convenient quantity -             -probability that nucleon interacts 
with cross section 

P(σ)
σ

If there were no fluctuations of strength - there will be no inelastic 
diffraction at t=0:

dσ(pp→X+p)
dt

dσ(pp→p+p)
dt | t = 0

=
∫

(σ − σtot)2P (σ)dσ

σ2
tot

≡ ωσ variance
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√
s= 30 GeV

√
s= 2 TeV

→→

The 30 GeV curve is result of the analysis (Baym et al 93) of the FNAL diffractive 
pp and pd data which explains FNAL diffractive pA data (Frankfurt, Miller, MS 
93-97). The  14 and 2TeV curves are my guess based on matching with fixed target  
data and collider  diffractive data.

→ √
s = 14 TeV
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Strength of the gluon field should depend on the size of the quark configurations - for small 
configurations the field is strongly screened - gluon density much smaller than average.

Consider γ∗L + p→ V + X for Q2 > few GeV2

 Expand initial proton state in a set of partonic states characterized by the number of 
partons and their transverse positions, summarily labeled as  |n〉

|p〉 =
∑

n

an|n〉

Each configuration n has a definite gluon density 
G(x, Q2| n) given by the expectation value of the 
twist--2 gluon operator in the state |n〉

G(x, Q2) =
∑

n|an|2G(x, Q2|n) ≡ 〈G〉

In this limit the QCD factorization theorem (BFGMS03, CFS07) for these processes is applicable 

How strong are fluctuations of the gluon field in nucleons?
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(dσdiff/dt)t=0 ∝
∑

n|an|2
[
G(x, Q2|n)

]2 ≡ 〈G2〉.

σinel = σdiff − σel

ωg ≡ 〈G2〉 − 〈G〉2

〈G〉2 =
dσγ∗+p→V M+X

dt

/
dσγ∗+p→V M+p

dt

∣∣∣∣
t=0

.

Making use of the completeness of partonic states, we find that the elastic(X = p)
 and total diffractive (X arbitrary) cross sections are proportional to

Hence cross section of inelastic diffraction is 

⇒

! V
"

n! " n! "

GPD

New sum rule!

(dσel/dt)t=0 ∝
[∑

n|an|2G(x, Q2|n)
]2 ≡ 〈G〉2,
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No official  numbers for t -slopes -  educ. guess  Bel /Binel ~ 3 ÷4   

⇒ ωg(Q2 ∼ few GeV2, x ∼ 10−3) ∼ 0.15÷ 0.2
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soft diffractive processes. We introduce the concept of
a configuration–dependent parton density and follow its
implications for various types of high–energy scattering
experiments with hard processes. Our investigation pro-
ceeds in three stages. First, we relate the fluctuations
of the gluon density to the ratio of inelastic to elastic
hard diffraction in ep scattering (HERA, future EIC) in
a model–independent fashion. Second, we use a simple
model of color fluctuations in the nucleon to illustrate
and quantify our results. Third, we discuss the implica-
tions of color fluctuations for pp/p̄p collisions with multi-
ple hard processes (Tevatron CDF), and for rapidity gap
survival in double–gap exclusive diffractive pp scattering
(RHIC, Tevatron, LHC). A more detailed account of our
studies will be given elsewhere [? ].

Consider diffractive production of vector mesons in ep
scattering at Q2 >∼ few GeV2, γ∗L + p → V + X, where
the proton may remain intact or dissociate into a set of
hadronic states X. The proton state can be expanded
in a set of partonic states characterized by the number
of partons and their transverse positions, summarily la-
beled as |n〉: |p〉 =

∑
n an|n〉. Each configuration n has a

definite gluon density G(x,Q2|n), given by the expecta-
tion value of the twist–2 gluon operator in the state |n〉,
and the overall gluon density in the proton is

G(x,Q2) =
∑

n|an|2G(x,Q2|n) ≡ 〈G〉. (2)

Because the partonic states appear “frozen” on the typi-
cal timescale of the hard scattering process, one can use
QCD factorization to calculate the amplitude for the vec-
tor meson production process configuration by configu-
ration. The latter is (up to small calculable corrections)
proportional to the gluon density in that configuration
[? ]. An essential point is now that in the leading–twist
approximation the hard scattering process attaches to a
single parton, and, moreover, does not transfer momen-
tum to that parton. It thus does not change the partonic
state |n〉. Making use of the completeness of partonic
states, we find that the elastic (X = p) and total diffrac-
tive (X arbitrary) cross sections are proportional to

(dσel/dt)t=0 ∝
[∑

n|an|2G(x,Q2|n)
]2 ≡ 〈G〉2, (3)

(dσdiff/dt)t=0 ∝
∑

n|an|2
[
G(x,Q2|n)

]2 ≡ 〈G2〉. (4)

For the cross section of diffractive dissociation σinel =
σdiff − σel we thus obtain

ωg ≡ 〈G2〉 − 〈G〉2

〈G〉2 =
dσinel

dt

/
dσel

dt

∣∣∣∣
t=0

. (5)

This model–independent relation allows one to infer the
fluctuations of the gluon density from the observable ra-
tio of inelastic and elastic diffractive vector meson pro-
duction. It can be easily generalized to a large variety of
hard processes such as γ∗L + T → 2π (two jets) + T , or Υ
production in ultraperipheral pp collisions at LHC [? ].
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FIG. 1: The dispersion of fluctuations of the gluon density, ωg,
as a function of x for several values of Q2, as obtained from
the scaling model, Eqs. (??)–(??), and a phenomenological
parametrization of the gluon density.

Generally, relative fluctuations of the density decrease
if the number of constituents of a system increases. Thus,
we expect ωg to decrease slowly with increasing Q2 for
fixed x, and with decreasing x for fixed Q2. For the same
reason we expect ωg to be suppressed in scattering from
nuclear targets. Present experimental data on the cross
section ratio of Eq. (??) are very limited; they are consis-
tent with a weak dependence on Q2 (the effective scale in
vector meson production at HERA is Q2

eff ∼ 2− 4GeV2)
and the vector meson mass, and indicate a value of ωg of
the same magnitude as ωσ at comparable energies.

More quantitative studies of gluon fluctuations are pos-
sible within a dynamical model of nucleon structure.
Modeling the configuration dependence of parton den-
sities is a complex task, requiring detailed knowledge of
the nucleon’s partonic wave function. To study the pos-
sible magnitude of fluctuation effects and their x– and
Q2–dependence, we propose here a simple model based
on two assumptions: (a) The hadronic cross section of a
configuration moderate energies (

√
s ∼ 20 GeV) is pro-

portional to the transverse area occupied by the color
charges in that configuration, σ ∝ R2

config; (b) the par-
ton density changes with the size of the configuration
only through its dependence on the normalization scale,
µ2 ∝ R−2

config ∝ σ. The latter is similar to the “nucleon
swelling” model of the EMC effect [? ] and implies a
simple scaling relation for the σ–dependent gluon den-
sity:

g(x,Q2 |σ) = g(x, ξQ2), (6)

ξ(Q2) ≡ (σ/〈σ〉)αs(Q2
0)/αs(Q2) , (7)

where Q2
0 ∼ 1 GeV2. Assumption (b) then allows us to

The dispersion of fluctuations of the gluon 
density, ωg, as a function of x for several values of 
Q2, as obtained from the scaling model

Simple “scaling model”     based on two assumptions

● At moderate energies √s = 20 GeV  the hadronic cross section of a configuration is 
proportional to the transverse area occupied by the color charges in that configuration,

σ ∝ R2
config

● the normalization scale of the parton density changes proportionally to the size of the 
configuration µ2 ∝ R−2

config ∝ σ−1
(in the spirit of Close et al 83 - EMC effect model)

G(x, Q2 |σ) = G(x, ξQ2) ξ(Q2) ≡ (σ/〈σ〉)αs(Q2
0)/αs(Q2)

whereQ2
0 ∼ 1 GeV2

the model designed for small x < 0.01. There maybe 
other   effects which could contribute to ωg for large x

Warning: 

At the same time decrease of ωg with Q2 at x=const - generic effect

Gluon fluctuations have to be explored both theoretically and experimentally 
including implications for LHC final states
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Suppression of gap survival due to interplay of soft and hard physics at large impact parameters-
hard-soft interplay in pp→p+H+p

Q2
int

x

x

1

2

soft

GPD

GPD

hard

soft

FHSW, PRD 75:054009, 2007

H produced in hard process 

µ2
soft ! Q2

int !M2 Khoze et al. 97+

◊

x1,2 ∼
M√

s
∼ 10−2

◊ Soft spectator interactions  must not 
produce particles S2 ≡ σdiff(full)

σdiff(no soft)
◊ Mean--field approximation:

[Vhard, Hsoft] = 0
independent, closure of partonic states

◊
Different time/distance scales!

Amplitude is calculable in terms  of 

- Gluon GPD unintegrated

- pp elastic S-matrix
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S2  in mean field approximation

and introduce a normalized impact parameter distribution,
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which satisfies

 

Z
d2bPhard!b" ) 1: (76)

In terms of this distribution the RGS probability (73) is
expressed as

 S2 )
Z

d2bPhard!b"j1% !!b"j2: (77)

This result agrees with the expression for the RGS proba-
bility derived heuristically in Refs. [11–13,55]. For the
comparison of our result for the RGS probability with
that obtained with the pomeron model of Ref. [5], we refer
to Sec. V B below; see also the comments at the end of
Sec. IV D.

Expression (77) for the RGS probability allows for a
simple probabilistic interpretation. Consider a pp collision
at given impact parameter, b ) jbj. Since the hard two-
gluon exchange process is effectively local in transverse
space, the probability for it to happen is proportional to the
product of the squared transverse spatial distributions of
gluons in the two colliding protons, integrated over the
transverse plane, as given by the numerator of Eq. (75).
Consider now a hypothetical sample of pp events with the
two-gluon induced hard scattering process, but an other-
wise arbitrary (nondiffractive) final state. By the laws of
probability, the distribution of impact parameters in this
sample is given by the normalized distribution Phard!b",
Eq. (75). A diffractive event results if the spectator systems
of the two protons do not interact inelastically. The proba-
bility for this to happen in a pp collision at fixed b is given
by j1% !!b"j2, cf. Eq. (4), in analogy to the well-known
formula for inelastic scattering in nonrelativistic theory
[56]. The RGS probability, which is defined as the fraction
of diffractive events in the sample of all events containing
the same hard scattering process, is then given by the
average of this function with the normalized b distribution
in the sample, Eq. (77).

It needs to be stressed that the impact parameter of a
single pp event is not observable, being a microscopic
quantity beyond the reach of any experimental apparatus.
In the above arguments, the impact parameter plays the
role of a randomly chosen external parameter. However,
using information about the transverse spatial distribution
of gluons in the proton from independent measurements,
we can calculate the probability for certain hard processes
in a pp collision as a function of the impact parameter, and
thus infer the distribution of impact parameters in a sample
of events with the same hard process. This logic was used

in Ref. [24] to devise a trigger on central collisions in
inclusive pp scattering by requiring hard dijet production
at small rapidities. Here we use the same strategy to model
soft spectator interactions in double-gap exclusive diffrac-
tive pp scattering.

The integrand in Eq. (77) describes the effective distri-
bution of impact parameters in a sample of double-gap
diffractive events and reflects the interplay of hard and soft
interactions at the cross section level. The probability for
the hard process, Phard!b", favors small impact parameters,
which maximize the overlap of the large-x gluon distribu-
tions in the protons, and vanishes for b2 * 1=Bg. The
probability for no inelastic soft interactions, j1% !!b"j2,
favors large impact parameters, which increase the chances
for the protons to stay intact, and vanishes for b2 + 1=B
where pp scattering approaches the BDL. The product of
the two probabilities is suppressed both at small and at
large b and thus concentrated at intermediate values of b.

This point can be illustrated nicely with the Gaussian
parametrizations of the transverse spatial distribution of
gluons, Eq. (34), and the pp elastic profile function,
Eq. (12). With the Gaussian form (34), the convolution
integral in Eq. (75) can be computed analytically,

 Phard!b" )
exp'%b2=!2Bg"(

2#Bg
: (78)

This function is shown by the dashed line in Fig. 8. The
integrand of Eq. (77) is given by
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2
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and is shown by the solid line in Fig. 8. It is suppressed both
for b2 + 1=B (because of the ‘‘blackness’’ of the pp
amplitude) and for b2 * 1=Bg (because of the vanishing
of the overlap of the two gluon distributions) and thus
concentrated at intermediate values of b. The maximum
of 2#b times the combined distribution is at

 b2 , 5Bg !Bg + B": (80)

We see that within our two-scale picture of the transverse
structure of hard and soft interactions, cf. Fig. 2, the
dominant impact parameters in double-gap exclusive dif-
fractive processes are determined by Bg—the smaller of
the two areas—but may be numerically large because of a
large numerical factor. The RGS probability, Eq. (77), is
given by the integral of 2#b times Eq. (79) (i.e., the area
under the solid curve in Fig. 8) and can be computed
analytically,

 S2 ) 2B2
g

!B$ Bg"!B$ 2Bg"
, 2B2

g

B2 !Bg + B": (81)
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by j1% !!b"j2, cf. Eq. (4), in analogy to the well-known
formula for inelastic scattering in nonrelativistic theory
[56]. The RGS probability, which is defined as the fraction
of diffractive events in the sample of all events containing
the same hard scattering process, is then given by the
average of this function with the normalized b distribution
in the sample, Eq. (77).

It needs to be stressed that the impact parameter of a
single pp event is not observable, being a microscopic
quantity beyond the reach of any experimental apparatus.
In the above arguments, the impact parameter plays the
role of a randomly chosen external parameter. However,
using information about the transverse spatial distribution
of gluons in the proton from independent measurements,
we can calculate the probability for certain hard processes
in a pp collision as a function of the impact parameter, and
thus infer the distribution of impact parameters in a sample
of events with the same hard process. This logic was used

in Ref. [24] to devise a trigger on central collisions in
inclusive pp scattering by requiring hard dijet production
at small rapidities. Here we use the same strategy to model
soft spectator interactions in double-gap exclusive diffrac-
tive pp scattering.

The integrand in Eq. (77) describes the effective distri-
bution of impact parameters in a sample of double-gap
diffractive events and reflects the interplay of hard and soft
interactions at the cross section level. The probability for
the hard process, Phard!b", favors small impact parameters,
which maximize the overlap of the large-x gluon distribu-
tions in the protons, and vanishes for b2 * 1=Bg. The
probability for no inelastic soft interactions, j1% !!b"j2,
favors large impact parameters, which increase the chances
for the protons to stay intact, and vanishes for b2 + 1=B
where pp scattering approaches the BDL. The product of
the two probabilities is suppressed both at small and at
large b and thus concentrated at intermediate values of b.

This point can be illustrated nicely with the Gaussian
parametrizations of the transverse spatial distribution of
gluons, Eq. (34), and the pp elastic profile function,
Eq. (12). With the Gaussian form (34), the convolution
integral in Eq. (75) can be computed analytically,
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This function is shown by the dashed line in Fig. 8. The
integrand of Eq. (77) is given by
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and is shown by the solid line in Fig. 8. It is suppressed both
for b2 + 1=B (because of the ‘‘blackness’’ of the pp
amplitude) and for b2 * 1=Bg (because of the vanishing
of the overlap of the two gluon distributions) and thus
concentrated at intermediate values of b. The maximum
of 2#b times the combined distribution is at

 b2 , 5Bg !Bg + B": (80)

We see that within our two-scale picture of the transverse
structure of hard and soft interactions, cf. Fig. 2, the
dominant impact parameters in double-gap exclusive dif-
fractive processes are determined by Bg—the smaller of
the two areas—but may be numerically large because of a
large numerical factor. The RGS probability, Eq. (77), is
given by the integral of 2#b times Eq. (79) (i.e., the area
under the solid curve in Fig. 8) and can be computed
analytically,
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and introduce a normalized impact parameter distribution,
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which satisfies
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d2bPhard!b" ) 1: (76)
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[56]. The RGS probability, which is defined as the fraction
of diffractive events in the sample of all events containing
the same hard scattering process, is then given by the
average of this function with the normalized b distribution
in the sample, Eq. (77).

It needs to be stressed that the impact parameter of a
single pp event is not observable, being a microscopic
quantity beyond the reach of any experimental apparatus.
In the above arguments, the impact parameter plays the
role of a randomly chosen external parameter. However,
using information about the transverse spatial distribution
of gluons in the proton from independent measurements,
we can calculate the probability for certain hard processes
in a pp collision as a function of the impact parameter, and
thus infer the distribution of impact parameters in a sample
of events with the same hard process. This logic was used

in Ref. [24] to devise a trigger on central collisions in
inclusive pp scattering by requiring hard dijet production
at small rapidities. Here we use the same strategy to model
soft spectator interactions in double-gap exclusive diffrac-
tive pp scattering.

The integrand in Eq. (77) describes the effective distri-
bution of impact parameters in a sample of double-gap
diffractive events and reflects the interplay of hard and soft
interactions at the cross section level. The probability for
the hard process, Phard!b", favors small impact parameters,
which maximize the overlap of the large-x gluon distribu-
tions in the protons, and vanishes for b2 * 1=Bg. The
probability for no inelastic soft interactions, j1% !!b"j2,
favors large impact parameters, which increase the chances
for the protons to stay intact, and vanishes for b2 + 1=B
where pp scattering approaches the BDL. The product of
the two probabilities is suppressed both at small and at
large b and thus concentrated at intermediate values of b.

This point can be illustrated nicely with the Gaussian
parametrizations of the transverse spatial distribution of
gluons, Eq. (34), and the pp elastic profile function,
Eq. (12). With the Gaussian form (34), the convolution
integral in Eq. (75) can be computed analytically,
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and is shown by the solid line in Fig. 8. It is suppressed both
for b2 + 1=B (because of the ‘‘blackness’’ of the pp
amplitude) and for b2 * 1=Bg (because of the vanishing
of the overlap of the two gluon distributions) and thus
concentrated at intermediate values of b. The maximum
of 2#b times the combined distribution is at

 b2 , 5Bg !Bg + B": (80)

We see that within our two-scale picture of the transverse
structure of hard and soft interactions, cf. Fig. 2, the
dominant impact parameters in double-gap exclusive dif-
fractive processes are determined by Bg—the smaller of
the two areas—but may be numerically large because of a
large numerical factor. The RGS probability, Eq. (77), is
given by the integral of 2#b times Eq. (79) (i.e., the area
under the solid curve in Fig. 8) and can be computed
analytically,
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Fig. 1: (a) Transverse geometry of hard diffractive pp scattering. (b) Dashed line: Probability for hard scattering
process Phard(b) as function of the pp impact parameter, b. Dotted line: Probability for no inelastic interactions
between the protons, |1 − Γ(b)|2. Solid line: Product Phard(b)|1 − Γ(b)|2. The RGS probability (1) is given by the
area under this curve. The results shown are for Higgs production at the LHC (

√
s = 14 TeV, MH ∼ 100 GeV).

(We point out that the distributions shown in Fig. 8 of Ref. [4] correspond to a gluon t–slope Bg = 4 GeV−2, not
Bg = 3.24 GeV−2 as stated in the caption. The plot here shows the correct distributions for Bg = 3.24 GeV−2.)

integral (1) (see Fig. 1b) and determines the value of the RGS probability to be S2 ! 1. One sees
that the approach to the BDR in soft interactions plays an essential role in RGS at high energies.

3 Black–disk regime in hard spectator interactions
At LHC energies even highly virtual partons (k2 ∼ few GeV2) with x ! 10−2 experience
“black” interactions with the small–x gluons in the other proton. This new effect causes an addi-
tional suppression of diffractive scattering which is not included in the traditional RGS probabil-
ity [4]. One mechanism by which this happens is the absorption of “parent” partons in the QCD
evolution leading up to the hard scattering process (see Fig. 2a). Specifically, in Higgs production
at the LHC the gluons producing the Higgs have momentum fractions x1,2 ∼ MH/

√
s ∼ 10−2;

their “parent” partons in the evolution (quarks and gluons) typically have momentum fractions
of the order x ∼ 10−1 and transverse momenta k2

T ∼ few GeV2. Quantitative studies of the
BDR in the dipole picture show that at the LHC energy such partons are absorbed with near–unit
probability if their impact parameters with the other proton are ρ1,2 " 1 fm (see Fig. 2b). For
proton–proton impact parameters b < 1 fm about 90% of the strength in Phard(b) comes from
parton–proton impact parameters ρ1,2 < 1 fm (cf. Fig. 1a), so that this effect practically elimi-
nates diffraction at b < 1 fm. Since b < 1 fm accounts for 2/3 of the cross section [see Eq. (1)
and Fig. 1b)], and the remaining contributions at b > 1 fm are also reduced by absorption, we
estimate that inelastic interactions of hard spectators in the BDR reduce the RGS probability at
LHC energies to about 20% of its soft–interaction value.

In the above argument one must also allow for the possibility of trajectories with no gluon
emission. Mathematically, they correspond to the Sudakov form factor–suppressed δ(1−x)–term
in the evolution kernel. While such trajectories are not affected by absorption, their contributions

probability to two partons to interact at given b

<ρ>~ 0.5 fm

Answer in the mean field approximation is expressed through the 
experimentally measured elastic amplitude of pp scattering

Γ(b) - impact factor for elastic pp amplitude

10



The integrand (impact factor distribution) in the RGS probability for Higgs 
boson production at the LHC energy. Dashed line: b distribution of the hard  
two-gluon exchange, Phard(b) evaluated with exponential parametrization of 
the two-gluon form factor with Bg=3.24 GeV-2. Solid line: the product 
Phard(b)|1-Γ(b)|2 . Vanishing of |1-Γ(b)|2 strongly suppresses the contribution 
of the small impact parameters. RGS probability, S2 is given by the area under 
the solid curve. Note that median of the distribution is at b~0.8 fm.

11

!
2

!
1

b

process
hard

 0

 0.1

 0.2

 0  1  2  3
0

0.5

1
2
 !

 b
 
 P

h
a
rd

(b
) 

 [
fm

-1
]

|1
 -

 "
(b

)|
2

b  [fm]

|1 - "(b)|
2

Phard(b)

Product

(a) (b)

Fig. 1: (a) Transverse geometry of hard diffractive pp scattering. (b) Dashed line: Probability for hard scattering
process Phard(b) as function of the pp impact parameter, b. Dotted line: Probability for no inelastic interactions
between the protons, |1 − Γ(b)|2. Solid line: Product Phard(b)|1 − Γ(b)|2. The RGS probability (1) is given by the
area under this curve. The results shown are for Higgs production at the LHC (

√
s = 14 TeV, MH ∼ 100 GeV).

(We point out that the distributions shown in Fig. 8 of Ref. [4] correspond to a gluon t–slope Bg = 4 GeV−2, not
Bg = 3.24 GeV−2 as stated in the caption. The plot here shows the correct distributions for Bg = 3.24 GeV−2.)

integral (1) (see Fig. 1b) and determines the value of the RGS probability to be S2 ! 1. One sees
that the approach to the BDR in soft interactions plays an essential role in RGS at high energies.

3 Black–disk regime in hard spectator interactions
At LHC energies even highly virtual partons (k2 ∼ few GeV2) with x ! 10−2 experience
“black” interactions with the small–x gluons in the other proton. This new effect causes an addi-
tional suppression of diffractive scattering which is not included in the traditional RGS probabil-
ity [4]. One mechanism by which this happens is the absorption of “parent” partons in the QCD
evolution leading up to the hard scattering process (see Fig. 2a). Specifically, in Higgs production
at the LHC the gluons producing the Higgs have momentum fractions x1,2 ∼ MH/

√
s ∼ 10−2;

their “parent” partons in the evolution (quarks and gluons) typically have momentum fractions
of the order x ∼ 10−1 and transverse momenta k2

T ∼ few GeV2. Quantitative studies of the
BDR in the dipole picture show that at the LHC energy such partons are absorbed with near–unit
probability if their impact parameters with the other proton are ρ1,2 " 1 fm (see Fig. 2b). For
proton–proton impact parameters b < 1 fm about 90% of the strength in Phard(b) comes from
parton–proton impact parameters ρ1,2 < 1 fm (cf. Fig. 1a), so that this effect practically elimi-
nates diffraction at b < 1 fm. Since b < 1 fm accounts for 2/3 of the cross section [see Eq. (1)
and Fig. 1b)], and the remaining contributions at b > 1 fm are also reduced by absorption, we
estimate that inelastic interactions of hard spectators in the BDR reduce the RGS probability at
LHC energies to about 20% of its soft–interaction value.

In the above argument one must also allow for the possibility of trajectories with no gluon
emission. Mathematically, they correspond to the Sudakov form factor–suppressed δ(1−x)–term
in the evolution kernel. While such trajectories are not affected by absorption, their contributions
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Hard - soft correlations
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Global correlations - larger size - 
stronger gluon field but also stronger 
absorption - reduce S2

ωg~ .2  ➠  reduction effect is only 20%
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Local  correlations induced by pQCD evolution

Interactions of 
parton “2” with 
second nucleon 

are not included in 
soft factor |1-Γ|2

In gluon GDPs for diffractive  Higgs production at LHC, Q2 ~ 4- 8 GeV2,  x~ 10-2

backward evolution - very high probability that these gluons originated from gluons at x ~10-1  
and pt~ 1GeV/c   - these gluons are present in the colliding nucleons and absorbed back into 
the final nucleon long after collisions provided they did not interact.   These partons are close 
to the interacting partons and hence not included in the soft absorption factor.

Probability to survive - interaction of a dipole with size d ~π /2pt ~ .3 fm
 at effective energy seff ~ sLHC/10:        xeff ~10-7 !!!

Consistent with evidence from analysis of suppression of forward pion 
production in deuteron- gold collisions at RHIC  FS 08
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integral (1) (see Fig. 1b) and determines the value of the RGS probability to be S2 ! 1. One sees
that the approach to the BDR in soft interactions plays an essential role in RGS at high energies.

3 Black–disk regime in hard spectator interactions
At LHC energies even highly virtual partons (k2 ∼ few GeV2) with x ! 10−2 experience
“black” interactions with the small–x gluons in the other proton. This new effect causes an addi-
tional suppression of diffractive scattering which is not included in the traditional RGS probabil-
ity [4]. One mechanism by which this happens is the absorption of “parent” partons in the QCD
evolution leading up to the hard scattering process (see Fig. 2a). Specifically, in Higgs production
at the LHC the gluons producing the Higgs have momentum fractions x1,2 ∼ MH/

√
s ∼ 10−2;

their “parent” partons in the evolution (quarks and gluons) typically have momentum fractions
of the order x ∼ 10−1 and transverse momenta k2

T ∼ few GeV2. Quantitative studies of the
BDR in the dipole picture show that at the LHC energy such partons are absorbed with near–unit
probability if their impact parameters with the other proton are ρ1,2 " 1 fm (see Fig. 2b). For
proton–proton impact parameters b < 1 fm about 90% of the strength in Phard(b) comes from
parton–proton impact parameters ρ1,2 < 1 fm (cf. Fig. 1a), so that this effect practically elimi-
nates diffraction at b < 1 fm. Since b < 1 fm accounts for 2/3 of the cross section [see Eq. (1)
and Fig. 1b)], and the remaining contributions at b > 1 fm are also reduced by absorption, we
estimate that inelastic interactions of hard spectators in the BDR reduce the RGS probability at
LHC energies to about 20% of its soft–interaction value.

In the above argument one must also allow for the possibility of trajectories with no gluon
emission. Mathematically, they correspond to the Sudakov form factor–suppressed δ(1−x)–term
in the evolution kernel. While such trajectories are not affected by absorption, their contributions
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Is there a chance to get S2 ~ 1% ?
Need mechanism to generate Hard gluons not correlated with other partons

example - Sudakov form factor suppressed contribution

The probability to find a gluon at x=10-2 at Q2=4 GeV2 which had the same x at 
a soft scale of Q02 is given by C δ(x-1) in the integral form of the evolution 
equation times the ratio of gluon pdfs at Q2 and Q02 

C =
[
SG(Q2/Q2

0)
]2 = exp(−3αs

π
ln2(Q2/Q2

0))

is the square of the gluon Sudakov form factor - probability not to emit a gluon in the amplitude

Hence suppression factor for this contribution is 

R = C2

[
gN (xH , Q2)
gN (xH , Q2

0)

]4
➙  ≤0.02    (Q2

0 = 1GeV 2)
(Q2

0 = 2GeV 2)≤0.3 too high Q02??

➠ S2 < 1%
assuming standard pattern of onset of 
saturation/ black disk regime and no novel 
parton correlation mechanisms in nucleons

➙



Summary

☛   Dedicated experimental studies of the new color 
fluctuation sum rule are necessary

☛  RGS -  New effect: Hard spectator interactions in black--disk regime

Reduces RGS probability at LHC by at least factor  of 3

Marginal at Tevatron --- careful with extrapolation!
◆
◆

Need detailed modeling including impact parameter dependence, 
parton radiation ``history,'' unitarity effects, and 
non-perturbative parton--parton correlations in wave function
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