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Diffractive physics program for experiments at the Large Hadron Collider is discussed with

emphasis on measurements of central exclusive processes. At low luminosities, a L1 trigger

based on requiring rapidity gaps can be used, while at high luminosities, the use of proton

taggers proposed to be placed at 220 m and 420 m from the interaction point is foreseen.

1 Introduction

In this contribution, we focus on measurements of exclusive processes that could be performed
at the multi-purpose LHC detectors, ATLAS and CMS. The central exclusive production (CEP)
of new particles has received a great deal of attention in recent years (see [1] and references
therein). The process is defined as pp → p ⊕ φ ⊕ p and all of the energy lost by the protons
during the interaction (a few percent) is used in the production of the central system, φ. The
final state therefore consists of a centrally produced hard subprocess, two very forward protons
and no other activity. The ’⊕’ sign denotes the regions devoid of activity, often called rapidity
gaps. In Double Pomeron Exchange (DPE), the central system contains remnants from the
diffractive exchange in addition to the hard subprocess.

2 Low Luminosity Running

At low luminosity, the diffractive processes can be detected using rapidity gaps. A possible L1
trigger would be based on a requirement of a rapidity gap on one or both sides from the IP and
an activity in the central detector with energy over a certain threshold. The gap may span the
region from the forward calorimeters of the ATLAS detector [2] or CMS detector [3] over the
luminosity detectors (LUCID [4] in ATLAS or TOTEM [5] in CMS) up to ZDC detectors in
ATLAS [6] or in CMS [3]. Measurements which would be straightforward and hence suitable
for analyses of the very early LHC data are ratios of the kind of X+gaps/X(incl.), where
X may be W, Z, dijet, heavy quark and dilepton, and X(incl.) means measuring X without
requiring rapidity gaps. Measurements of ratios are convenient since many sources of systematic
uncertainties are cancelled, particularly that of the luminosity at the early phase and among
other, they also serve as valuable checks of different components of the formalism used to predict
the CEP cross section by the KMR group [7, 8]. The soft survival probability, S2, can be studied
in electroweak processes, such as W+gaps or Z+ gaps. S2 is defined as a probability that
additional soft secondaries will not populate the gaps and it explains the factorisation breaking
observed at hadron colliders when diffractive parton density functions (dPDF) obtained in Single
Diffraction (SD) at HERA were applied in measurements of SD by CDF [9]. The generalised
gluon distribution, fg , can be probed in exclusive Υ production proceeding via either a photon



or an odderon exchange. The higher-order QCD effects, especially Sudakov-like factors and
also a possible role of the enhanced absorptive corrections can be studied in exclusive two- or
three-jet events. When the proton tagging becomes available, the t-dependence of the elastic,
SD and DPE cross sections can be obtained and hence effect of individual components of the
pile-up background can be evaluated.

2.1 Dijet Production in DPE and CEP

Without proton tagging, the dijet production in DPE and CEP can be measured by requir-
ing two central jets and rapidity gaps on both sides of the IP in forward calorimeter, LU-
CID/TOTEM and ZDC. In DPE, the rapidity gaps may be spoilt by particles from the pomeron
remnants and although the cross section is about two orders of magnitude larger than the CEP
cross section at the same dijet mass, the CEP cross section will dominate if the forward calorime-
ter is required to be devoid of activity. The measurement of the dijet production in CEP at
7–14 TeV may be compared with a similar measurement made at Tevatron from which models
used to describe the data may be constrained.

2.2 Gaps between Jets

By selecting events with two jets each in opposite side of forward calorimeter and a rapidity gap
in the central detector, ATLAS and CMS can improve an existing measurement of this type by
D0 [10] at centre-of-mass (c.m.s.) energy of 1.8 TeV. Different colour singlet exchange models
can be tested by comparing data with predictions for the gap fractions as functions of rapidity
between the jets.

3 High Luminosity Running

A great attention is recently devoted to the possibility of complementing the standard LHC
physics menu by adding forward proton detectors (FPD) to the ATLAS and CMS detectors.
They would detect a great part of the energy flow that escapes undetected by the main detectors.

3.1 SM and BSM Higgs Boson Production

The forward proton tagging will provide an exceptionally clean environment to search for new
phenomena at the LHC and to identify their nature. Of particular interest in this context
is the CEP which gives access to the generalised (or skewed) PDFs. The CEP of a SM (or
MSSM) Higgs boson is attractive for two reasons: firstly, if the outgoing protons remain intact
and scatter through small angles then, to a good approximation, the central system φ must be
produced in a Jz = 0, CP even state, therefore allowing a clean determination of the quantum
numbers of any observed resonance. Here Jz is the projection of the total angular momentum
along the proton beam axis. Secondly, from precise measurements of proton momentum losses,
ξ1 and ξ2, the mass of the central system can be measured much more precisely than from the
dijet mass measured in the calorimeters, by the so-called missing mass method, M 2 = ξ1ξ2s,
which is independent of the decay mode. The simplest decay mode from an experimental
perspective is the WW decay mode, in which one (or both) of the W bosons decay leptonically.
With standard single and double lepton trigger thresholds at ATLAS (or CMS), approximately
6 events are expected for Higgs boson mass around 160 GeV with luminosity of 30 fb−1 [11]. In



the bb̄ decay mode, the quantum number selection rules in CEP strongly suppress the QCD b-
jet background, nevertheless severe requirements necessary to get rid of the pile-up background
make the event yield rather modest [12, 13]. Full details of the calculation of the background
to this channel are described in [14, 15].

In certain regions of the MSSM parameter space the cross section for the CEP of Higgs
bosons is significantly enhanced and hence making the bb̄ decay mode attractive [15, 16]. In
Fig. 1 an example mass spectrum is shown for MSSM Higgs boson candidates of mass of 120 GeV
decaying into bb̄ for tan β = 40 (corresponding to the final cross section of about 18 fb) after
3 years of data taking at luminosity of 2 · 1033 cm−2s−1 or 3 years at 1034 cm−2s−1. At the low
luminosity, the pile-up background can be completely eliminated and the statistical significance
is around 3.5σ. At the highest luminosity, fast timing detectors are necessary to reduce the
pile-up background - significance of 5 σ is achieved with time resolution of 2 ps (see Section 4.4).
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Figure 1: A typical mass fit of the H → bb̄ signal and its backgrounds for 3 years of data
taking with ATLAS and the 420+420 detector configuration (a) at 2 · 1033cm−2s−1 (60 fb−1).
The significance of the fit is 3.5 σ. (b) at 1034cm−2s−1 after removing the pile-up background
completely. The significance is 5 σ. Figures from [16].

3.2 Central Exclusive Jet Production

The tagging of both protons in FPDs will enable a measurement of the proton transverse mo-
menta and azimuthal angles which allows us to study the opacity of the incoming protons, and
more generally, to test the dynamics of the soft survival probability by studying the correla-
tions between the outgoing protons [7, 17]. This can be carried out with the CEP of dijets as
the cross section is large. Thanks to the Jz = 0 selection rule which is applicable to all CEP
processes, quark jet production is suppressed and the CEP can then be recognised as reduced
ratio of b-jets to all jets when compared to other production processes.

3.3 Diffraction and QCD

The SD and DPE processes serve to provide an information about the low-x structure of the
proton and the dPDFs. Inclusive jet and heavy quark production are mainly sensitive to the
gluon component of the dPDFs, while vector boson production is sensitive to quarks. The
kinematic region covered expands that explored at HERA and Tevatron, with values of β (the
fractional momentum of the struck parton in the diffractive exchange ) as low as 10−4 and of
Q2 up to 104 GeV2. More information about the SD dijet and W boson production can be
found elsewhere in these proceedings (V. Juranek and W. Carvalho)



3.4 Photon-Photon Physics

As the LHC beams act also as a source of high-energy photons a rich program of photon-photon
and photon-proton physics can be pursued. Photon-induced processes have been extensively
studied at LEP and HERA. However at LHC, these processes can be investigated in an un-
explored region of the phase-space. The final state topology is similar to CEP, i.e. a central
system, X, separated on each side by large rapidity gap from a very forward proton detected in
the FPD. Different average proton transverse momenta make it possible to separate between
diffractive and photon-induced events.

The W- and Z-pair production (as a tool to study anomalous triple and quartic gauge cou-
plings) is discussed elsewhere in these proceedings (O. Kepka). The SUSY particle production
is described by K. Piotrzkowski in these proceedings and in [18].

3.4.1 Lepton Pair Production

Two-photon exclusive production of muon pairs has a well known QED cross section, including
very small hadronic corrections [19]. Very recently, such event candidates have been observed
by the CDF [20] and their cross sections found in a good agreement with theory. After applying
simple selection criteria such as pT > 10 GeV, |η| < 2.5 and requiring one forward proton tag,
the cross section is 1.3 pb [1, 21]. This corresponds to approximately 50 muon pairs detected in
a 12 hour run at a mean luminosity of 1033cm−2s−1. The large event rate coupled with a small
theoretical uncertainty makes this process a perfect candidate for the absolute LHC luminosity
calibration [22] and also of the FPD system at 420 m [1]. The e+e− production can also be
studied, although the trigger thresholds will be larger and hence the final event rate reduced.

3.5 Photoproduction

The high luminosity and the high c.m.s. energies available for photoproduction processes at
the LHC allows us to study electroweak interactions and to search Beyond the Standard Model
up to the TeV scale [21].

3.5.1 Associated WH Production

As shown in [21], the cross section for the associated WH production (pp → (γp → WHq ′) →
pWHq′Y after applying selection criteria and considering five different final states is 0.17 fb at
mH = 115 GeV and 0.29 fb at mH = 170 GeV. The most promising channel seems to be the
jjl±l± at mH = 170 GeV where the signal to irreducible background ratio is 0.22 fb/0.28 fb,
so luminosity of 100 fb−1 might reveal the HWW gauge coupling.

3.5.2 Single Top Quark and Anomalous Top Quark Production

Photoproduction of single top quark (pp → (γp → Wt) → pWtY ) is dominated by t-channel
amplitudes in association with a W boson which all are proportional to the CKM matrix element
|Vtb|. The ratio of associated Wt production cross section to the sum of all top production cross
sections is 5% for parton-parton interactions, while it is 50% in photoproduction. In [21] two
topologies were studied, namely lbjj and llb. The signal cross section after selection cuts of
about 44 fb with a signal to irreducible background ratio of 0.6 suggest that this mechanism
and hence |Vtb| may be easily measurable even with luminosity of 1 fb−1.



At LHC the exclusive single top quark photoproduction can only occur via flavour changing
neutral current processes which are not present at tree level of SM but appear in many extensions
of SM such as two Higgs-doublet models or R-parity violating supersymmetry. The final state
of this pp → (γp → t) → ptY process is composed of a b-jet and a W boson. In [21] the leptonic
lb topology was studied and only photoproduction γp → W + jet background considered. With
an integrated luminosity of 1 fb−1 the expected limits for anomalous couplings ktuγ and ktcγ

at 95% CL are greatly improved with respect to existing best estimates.

3.5.3 Photoproduction of Jets

In photoproduction of jets, the fraction of the photon, xγ , and proton, xp, four-momentum
carried by a parton involved in binary hard scattering is calculated using the energies and
angles of jets in the central detector and of the protons in the FPDs. The direct photon
processes are characterised by xγ ∼ 1 and resolved photon processes by xγ < 1. The H1 and
ZEUS collaborations have constrained the region xp, xγ > 0.1 for diffractive photoproduction.
At LHC we expect to reach values of xp and xγ of an order of magnitude lower than at HERA.
Furthermore, the diffractive photoproduction of dijet systems at the LHC promises to shed
light on the issue of the QCD factorisation breaking recently reported in the same process by
the H1 experiment [23].

3.5.4 Exclusive Υ Production

Exclusive Υ photoproduction, γp → Υp can be studied using FPDs [8], although only one proton
can be tagged due to the low mass of the Υ. The cross section is expected to be approximately
1.25 pb for the decay channel Υ → µ+µ− and is sensitive to the same skewed unintegrated
gluon densities of the proton as the CEP of Higgs boson. Measuring this process thus helps
to constrain the fg as the soft survival factor is expected to be close to 1. The γp → Υp

process can also occur via odderon exchange and this channel could be the first evidence for
the odderon’s existence.

4 Future Forward Proton Upgrades at the LHC

The forward detectors and possible upgrades at ATLAS and CMS have been described elsewhere
by A. Zoccoli in these proceedings.

4.1 FP420

The FP420 R&D collaboration [1], with members from ATLAS, CMS and LHC studied the
possibility of installing high precision tracking and timing detectors at 420 m from the IP.
Detection of the protons will be achieved by two 3D silicon detector stations at each end of
the FP420 region. This novel technique provides high radiation-resistive detectors close to the
beam with an insensitive area as small as 5 µm and with a resolution of about 15 µm. The
tracking and timing detectors will be attached to a movable beam pipe. As the beam pipes
in the 420 m region are contained in an interconnecting cryostat and the sensitive detectors
are best operated at room temperature, a new connection cryostat has been designed using a
modified Arc Termination Module at each end.



4.2 Coverage of the Region of 220–240 m

Both ATLAS and CMS collaborations work on equipping the region of 220 m (ATLAS) or
240 m (CMS) by FPDs. The proposed equipment would be very similar to that at 420 m;
differences are mainly in no need to change the cryostat and in an addition of a detector to be
used for L1 trigger. In ATLAS, the combined effort to install FPDs at 220 and 420 m led in
the AFP project (ATLAS Forward Proton) [24].

4.3 Acceptance and Resolution

With the position resolution of 15 µm we expect a mass resolution of the order of 1–2% for the
420+420 and about 3% for the 420+220 configurations over a mass range of 120–200 GeV. For
given dipole apertures and collimator settings and a thin window of 200 µm, the expected ξ

range is 0.002–0.02 for 420+420 and 0.01–0.15 for the 420+220 configuration.
The low-ξ (and therefore low mass) acceptance depends critically on the distance of approach

of the active area of the sensitive detectors from the beam. The final distance of approach will
depend on the beam conditions, machine-induced backgrounds and collimator positions, and
the RF impact of the detector on the beams. At 420 m the nominal operating position is
assumed to be between 5 and 7.5 mm, at 220 m it is between 2.0 and 2.5 mm. For masses
above about 120 GeV, the 220 m detector adds to the acceptance with increasing importance
as the central mass increases. The differences between ATLAS and CMS acceptances for the
420+420 as well as 420+220 configurations (see Fig. 2) are due to a different crossing angle
which is in the vertical plane for IP1 (ATLAS) and horizontal plane at IP5 (CMS).
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Figure 2: Mass acceptance for the 420+420 and 420+220 detector configurations (5 mm from
the beam for 420 m and 1.5 mm for 220 m detectors) for IP1 and IP5. From [1].

4.4 Timing Detectors

The most prominent background to many diffractive physics analyses comes from an overlap
of two soft SD events from pile-up and one ND event produced at a hard scale. Fast timing
detectors with an expected sub-10 ps time resolution corresponding to a vertex resolution of
better than 2.1 mm should be able to assign a vertex to the proton detected in the FPD
and to reject about 97% of cases that appear to be CEP events but where the protons in
reality originated from coincidences with pile-up events. Presently two detector options are
studied, namely Quartz and Gas Cerenkov which may be read out with a Constant Fraction
Discriminator allowing the time resolution to be significantly improved compared to usual
electronics.



4.5 Trigger

Due to a limited L1 trigger latency, detectors at 420 m are far away from the central detectors
to be included in the L1 trigger in normal running conditions, while detectors at 220 m can in
principle be included. The trigger strategy depends on the mass of the diffractively produced
object [12]. Demanding standard L1 triggers such as those for high mass H→WW/ZZ or high-
pT dijet trigger would result in an acceptable output rate which may be further reduced by
requiring the double proton tag at 220 m.

Triggering on low mass objects is more difficult but in principle feasible as documented in
[25, 26] where diffractive L1 triggers for a case of H → bb̄ at mH=120 GeV have been proposed.
If the FPD trigger at 220 m is capable of triggering only on hits in the inner 4 mm part and if
the L1 calorimeter is capable of defining exclusivity criteria using ET , η and φ, then the final
output rate is well below a 2 kHz limit at L = 2 · 1033cm−2s−1 and slightly above this limit at
L = 1034cm−2s−1. Other reductions are under study [26].
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