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In the theoretical analysis of high-energy elastic nucleon scattering one starts commonly
from the description based on the validity of the optical theorem, which allows to derive the
value of the total cross section directly from the experimentally measured t-dependence
of the elastic differential cross section at the corresponding energy. It may be shown,
however, that this theorem has been derived on the basis of one assumption that might be
regarded perhaps as acceptable in the case of long-range (e.g. Coulomb) forces but must
be denoted as quite unacceptable in the case of finite-range hadron forces. Consequently,
the conclusions leading to the increase of the total cross section with energy at higher
collision energies must be newly analyzed and reevaluated. It concerns also the value of
the beam luminosity derived from elastic data. The necessity of new analysis concerns the
derivation of the hadronic t-dependence at very low transverse momenta as the separation
of Coulomb scattering may be also strongly influenced. It will be shown in conclusion that
all mentioned problems might be solved on the basis of the ontological model proposed
quite recently.

1 Introduction

It is commonly argued that it is possible to derive also the value of the total cross section directly
from the measured t-dependence of the elastic differential cross section when the validity of the
optical theorem is taken into account. And the derived values indicate that the total cross
section should rise with energy. From these values the beam luminosity is also being derived.

However, we will show that in the derivation of the optical theorem some important as-
sumption has been involved that may be perhaps acceptable for infinite-range Coulomb force,
but can be hardly brought to harmony with the finite-range forces between nucleons. It means
that neither the total cross section nor the beam luminosity may be derived from the measured
differential elastic scattering cross section in the framework of the standard phenomenological
theory without adding some assumption or additional property.

The validity of the optical theorem does not correspond to reality and all conclusions based
on it should be reevaluated. However, it will be shown in the last additional section that some
properties of ontological model might help in solving newly the given problems.

2 Optical Theorem and its Derivation

Let us start with the standard derivation approach. We shall follow the approach described in
the book of Barone and Predazzi [1]. They have started from Fraunhofer diffraction and from
Babinet’s principle. The profile function of a hole has been denoted by Γ(b) and that of an
obstacle by S(b). When the initial state is represented by a plane wave ψin = eikz , the final



state may be expressed in the case of an obstacle as the superposition of the set of individual
scattered states (see also [2]):

U(x, y.z) = −
ik

2π
U0

eikr

r

∫

d2bS(b) e−iq.b

and similarly for the hole if S(b) is substituted by Γ(b). According to the Huygens-Fresnel
principle (S(b) + Γ(b) = 1) the same shapes of hole and obstacle combine again to the original
plane wave. The whole approach being based on the assumption of small diffraction angles
(sin θ ∼= θ).

The amplitude may be divided in principle into two parts: scattered and unscattered, where
the scattered part is represented by the function of transferred momentum q:

Uout(x, y, z)) = Uunsc + Uscatt = U0

(

ψunsc + f(q)
eikr

r

)

ψunsc = αeikz , |α| < 1; q = k′ − k, |k′| = |k| = k

The unscattered part is represented by a plane wave; of course, with some norm less than one.
The modulus squared of U(x, y, z) represents the final intensity and U0 - incoming intensity.

The differential elastic cross section is given by the square of f(q), and the total elastic
cross section may be expressed in integral form:

dσ

dΩ
= |f(q)|2, σel

∼=
1

k2

∫

|f(q)|2d2q =

∫

d2b|Γ(b|2

where Γ(b) represents the corresponding profile.
And if it is assumed that the unscattered part may be identified with f(0) and if the

interaction is normalised to unity one obtains the following expressions for absorption and total
cross sections:

σabs =

∫

d2b(1 − |S(b)|2)

σtot = σel + σabs = 2

∫

d2bReΓ(b)

It means that the total cross section should be represented by the imaginary part of scat-
tering amplitude at point q = 0:

σtot =
4π

k
Imf(q = 0)

However, some additional assumptions have been used that cannot be applied to in the case of
finite nucleon force, as it will be shown in the next section.

3 Nucleon Force and Optical Theorem

By identifying the unscattered state with one vector of scattered states the function f(q) has
been substituted in principle by capital F (q), where one singular point has been added to the
previous function:

U(x, y, z) = U0F (q)
eikr

r
; F (0) = f(0) + |ψunsc| .



However, in all approaches two assumptions concerning the function F (q) have been added;
the given function has been taken as continuous, which has meant that the unscattered part
has equalled zero, and as decreasing from q = 0 without any actual reason.

Both these assumptions might hold for infinite range Coulomb force, but they can hardly
correspond to finite nucleon force where also the whole fully unscattered part lies in the range
of measured beam. In any case the optical theorem cannot be applied to in the case of nucleon
scattering.

And we must ask: What is actual shape of nucleon scattering amplitude in the case of
very small scattering angles? And what are other physical consequences? E.g., how it is with
luminosity estimation?

4 Elastic Collisions at Very Small Angles

The situation may be demonstrated in Fig. 1 where two pairs of lines are pictured representing
the amplitudes of elastic scattering (real parts being neglected). Each pair is represented once by
complete (Coulomb and hadronic) amplitude and once by hadronic part. It has been assumed
that approximately at t = −0.02 GeV2 the contributions of both (Coulomb and hadronic)
components are the same.
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Figure 1: Different hadronic amplitudes corresponding approximately to elastic data obtained

at the energy of 53 GeV.

The first pair of curves represents the standard approach at ISR energy; the curves corre-
sponding approximately to experimental data obtained at energy of 53 GeV (see, e.g., [3]). The



other pair shows then that practically the same complete elastic amplitude may be obtained
even if the hadronic part behaves quite differently at very small values of |t|; the behaviour
corresponding better to the situation at finite-range forces when the profile function Γ(b) is
equal to zero for all values of b greater than bmax (Γ(b > bmax) = 0) and then rises rather
strongly with decreasing impact parameter b. The validity of the optical theorem cannot be
required, of course, in such a case.

It means that the values of hadronic scattering may be strongly overvalued in the region
around t = 0 in the standard approach. However, it is evident on the other side that in such a
case also the value of luminosity L derived from elastic scattering values:

dσel(t)

dt
= L|FC+N(t)|2,

might be very different, its contemporary values being significantly undervalued.

5 Conclusion

It follows from the preceding analysis that the contemporary phenomenological theories of
elastic collisions do not allow to establish the total cross sections without some additional
experiments or without more detailed analysis based on a model in which elastic and inelastic
processes would be mutually correlated on realistic physical grounds. There is also the question
how it is with the interpretation of nucleon elastic data for very small values of q. Are they
really decreasing from the value at q = 0 or may they exhibit different behaviour being fully
hidden under the effect of Coulomb force?

The problem is related very closely to the determination of corresponding total cross section
and to establishing luminosity value from elastic scattering data. All these values may be hardly
derived from elastic data if one must start from phenomenological models of elastic scattering
only.

Important problem must be seen in the fact that the t-dependence of elastic differential cross
section is the only available experimental set of data from which the mere modulus of complex
amplitude function may be established while the phase remains practically undetermined. Quite
different impact-parameter characteristics may be then derived according to its choice; see,
e.g., [4, 5]. It means that the behaviours ontologically very different may be derived on the
basis of standard phenomenological models.

The invalidity of optical theorem brings, therefore, rather inconclusive outlook as to the
consequences following from the analysis of experimental elastic data. And one should ask if it
is possible to find a procedure how to make use of elastic data in a more effective way. Such an
approach seems to follow from applying an ontological model to processes running in particle
collisions, which will be shortly described in the last additional section.

6 Additional Section: Ontological Model

In this additional section we should like to present a more promising view. We have shown quite
recently that the elastic data may be well interpreted on the basis of ontological approach that
allows to provide a correlation between elastic and inelastic processes. A nucleon consisting of
many constituents, quarks and partons, has been assumed to be a matter object existing in a
series of states differing by external dimensions.



The model has been explained and demonstrated with the help of elastic data obtained at
energy 53 GeV; see [6]. It has been shown that this data in the interval t ∈ (−4., 0.) GeV2

may be truly interpreted as the superposition of three collision types between two states that
exhibit maximal dimensions. All available elastic data at the given energy (in the interval
t ∈ (−14., 0.) GeV2 may be then well interpreted as the superposition of six collision kinds
between three nucleon states of maximal dimensions.

In addition to the already mentioned basic assumption (i.e., nucleon consisting of different
internal states) it has been assumed, too, that the probability of each elastic event at any value
of impact parameter may be expressed as the product of two probabilities:

Pel(b) = Ptot(b) . Prat(b);

the first factor representing total collision probability and the other one representing the ratio
of elastic processes to all collision processes.

And it may be regarded as quite natural from realistic point of view to add the third
assumption that these partial probabilities may be represented by two oppositely monotone
functions of impact parameter b. And it has been possible to establish both the monotone
functions for all involved collision kinds by performing the alternative fit of earlier ISR results.

Here are the corresponding preliminary results. The maximum dimensions of three largest
states (involved in the given collision process) should be 1.64, 1.42, 0.88 fm; these states should
exist in individual nucleons with following frequencies: ≈ 57, 31, 11 %.

Having known the b-dependent probabilities of total and elastic collisions for all collision
kinds it has been possible to determine also the approximate values of corresponding cross
sections:

σtot
∼= 36 mb, σel = 7.3 mb.

While the elastic cross section has had practically the same value as standardly introduced
the total cross section has differed rather significantly from the value obtained on the basis of
the optical theorem validity. This earlier value seems to have been overvalued approximately
by 15%. It means, of course, that also the luminosity value taken for ISR collider has been
probably undervalued by 15%.

The probability distribution of elastic processes in impact parameter plane have exhibited,
of course, clear peripheral behaviour, which has corresponded to similar results obtained on the
basis of eikonal approach [3].
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[4] V. Kundrát, M. Lokaj́ıček and D. Krupa, Phys. Lett. B544 132 (2002).

[5] V. Kundrát, M. Lokaj́ıček, Jr. and M. Lokaj́ıček, Czech. J. Phys. B31 1334 (1981).
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