Optical theorem and elastic nucleon scattering

M. V. Lokajíček, V. Kundrát

Institute of Physics, AVČR, v.v.i., 18221 Prague

1. Introduction
2. Optical theorem and its derivation
3. Finite hadron force and optical theorem
4. Elastic collisions at very small angles
5. Conclusion

1. Introduction

Optical theorem:
Elastic collisions (t-dependence)
\Longrightarrow total cross section
(increase with energy!)

However -

Important difference:
infinite-range Coulomb force vs.
finite-range nucleon force (assumption - unphysical)
2. Optical theorem and its derivation
V.Barone, E.Predazzi:

High-Energy Particle Diffraction; Springer 2002
Fraunhofer diffraction $\left(k R^{2} \ll D\right)$:
$\Gamma(b)$ - profile function of hole
Babinet's principle: hole and obstacle (S(b))

$$
U(x, y \cdot z)=-\frac{i k}{2 \pi} U_{0} \frac{e^{i k r}}{r} \int d^{2} \mathbf{b} S(\mathbf{b}) e^{-i \mathbf{q} \cdot \mathbf{b}}
$$

Huygens-Fresnel principle -

$$
(S(\mathbf{b})+\Gamma(\mathbf{b})=1) \longrightarrow \text { plane wave }
$$

Complete amplitude:

$$
\begin{aligned}
&\left.\hline U_{\text {out }}(x, y, z)\right)=U_{\text {unsc }}+U_{\text {scatt }} \\
&=U_{0}\left(\psi_{u n s c}+f(\mathbf{q}) \frac{e^{i k r}}{r}\right), \\
& \psi_{u n s c}=\alpha e^{i k z}, \quad|\alpha|<1 \\
& \mathbf{q}=\mathbf{k}^{\prime}-\mathbf{k}, \quad\left|\mathbf{k}^{\prime}\right|=|\mathbf{k}|=k
\end{aligned}
$$

$$
\begin{gathered}
U(x, y, z)=U_{0}\left(\psi_{u n s c}+f(\mathbf{q}) \frac{e^{i k r}}{r}\right) \\
f(\mathbf{q})=\frac{i k}{2 \pi} \int d^{2} \mathbf{b} \Gamma(\mathbf{b}) e^{-i(\mathbf{q} \cdot \mathbf{b})}
\end{gathered}
$$

$$
\Gamma(b) \text { - profile function }
$$

differential cross section - $\frac{d \sigma}{d \Omega}=|f(\mathbf{q})|^{2}$
integrated elastic cross section (small scattered angles + Parseval's theorem)

$$
\begin{array}{r}
\left.\sigma_{e l} \cong \frac{1}{k^{2}} \int|f(\mathbf{q})|^{2} d^{2} \mathbf{q}=\int d^{2} \mathbf{b} \right\rvert\, \Gamma\left(\left.\mathbf{b}\right|^{2}\right. \\
=\int d^{2} \mathbf{b}|1-S(\mathbf{b})|^{2}
\end{array}
$$

Further assumptions:

$\psi_{u n s c} \equiv f(0)$ and unitarity
absorption cross section -

$$
\begin{aligned}
\sigma_{a b s} & =\int d^{2} \mathbf{b}\left(1-|S(\mathbf{b})|^{2}\right) \\
& =\int d^{2} \mathbf{b}\left(2 \operatorname{Re} \Gamma(\mathbf{b})-\mid \Gamma\left(\left.\mathbf{b}\right|^{2}\right)\right. \\
\sigma_{t o t} & =\sigma_{e l}+\sigma_{a b s}=2 \int d^{2} \mathbf{b} \operatorname{Re} \Gamma(\mathbf{b})
\end{aligned}
$$

\Longrightarrow total cross section -

$$
\sigma_{t o t}=\frac{4 \pi}{k} \operatorname{Im} f(\mathbf{q}=0)
$$

3. Hadron force and optical theorem

$$
\begin{aligned}
& U(x, y, z)=U_{0}\left(\psi_{u n s c}+f(\mathbf{q}) \frac{e^{i k r}}{r}\right) \\
& U(x, y, z)=U_{0} F(\mathbf{q}) \frac{e^{i k r}}{r} \\
& F(0)=f(0)+\left|\psi_{\text {unsc }}\right| \quad \text { (singular point) }
\end{aligned}
$$

However:

$$
\begin{aligned}
& F(\mathbf{q}) \text { - as continuous } \\
& \quad(\text { and decreasing }) \\
& \Longrightarrow \quad F(0)=f(0) \text { or }\left(\psi_{\text {unsc }}=0\right)
\end{aligned}
$$

Acceptable:

- for Coulomb force
- not for finite nucleon force: $\psi_{u n s c} \neq 0 \quad$ (in measured beam)

Optical theorem: not generally valid

Questions: actual shape of $f(\mathbf{q})$? especially - value of $f(0)$? luminosity estimation?
4. Scattering at very small angles (all at $\approx 53 \mathrm{GeV}$)

Figure:

Two pairs of lines -
(complete ampl. + hadronic parts)
first pair (vertical line):

standard approach

second pair:
nucleon amplitude rises for small $|t|$

$$
\left[\Gamma\left(b>b_{\max }\right)=0\right]
$$

Luminosity : $\frac{d \sigma_{e l}(t)}{d t}=L\left|F^{C+N}(t)\right|^{2}$ derived at $|t|<0.02$ - undervalued?

5. Conclusion

see: /arXiv:0906.3961

Standard approach:

no optical theorem
(for hadron forces)

Phenomenological models:

cross sections and luminosity ?? (practically no possibility)
pessimistic outlook?!

However:

ontological approach?

M.L.: Hidden-variable theory vs. Copenhagen QM;
/arxiv:0905.0140,
will be published in Concepts of Physics (see also: Conference Proceedings, No. 1018, American Institute of Physics, 2008, pp. 40-5)

Appendix

Ontological model:
Two assumptions:

- each proton in different internal states (divers maximal dimensions - $b_{\max }$);
- for each internal state and any impact parameter: $\quad P_{e l}(b)=P_{t o t}(b) \cdot P_{r a t}(b)$ $P_{\text {rat }}$ - ratio of elastic to total probab., $P_{\text {tot }}, P_{\text {rat }}$: opposite monotony in $\left(0, b_{\max }\right)$

Preliminary results (53 GeV):
good (comparable) fits - $|t| \in(0,14) G e V^{2}$ 3 largest internal states: (6 comb.)
b-max: $1.61,1.4,0.88 \mathrm{fm}(\geq 0.4)$
frequency: $\approx 57 ., 37 ., 5 . \%$

$$
\sigma_{t o t}=\int_{0}^{b_{\max }} d b P_{t o t}(b) \cong 34 \mathrm{mb}, \sigma_{e l}=7.3 \mathrm{mb}
$$

Luminosity undervaluated: $\approx 20 \%$ solution - peripheral
(comp.: similar eikonal result)

