Pomeron and Odderon: Saturation and Confinement, and Gauge/String Duality

Chung-I Tan

June 29-July 3, 2009, CERN

13th Workshop on Elastic and Diffractive Scattering

High Energy scattering after AdS/CFT

- R. Brower, J. Polchinski, M. Strassler, and C-I Tan, "The Pomeron and Gauge/ String Duality", JHEP 0903:092,2009, (hep-th/0603115.)
- R. Brower, M. Strassler, and C-I Tan, "On the eikonal approximation in AdS space", JHEP 0903:050,2009, hep-th/0707.2408; "On The Pomeron at Large 't Hooft Coupling", JHEP 0903:092,2009, arXiv:0710.4378 [hep-th].
- R. Brower, M. Djuric, and C-I Tan, "Odderon and Gauge/String Duality", JHEP (in press), (arXiv:0812.0354.)

High Energy Near-Forward Scattering:

Regge Behavior

Pomeron 1

Total Cross Sections

 $\mathcal{A} \sim s^{J(t)} = s^{\alpha(0) + \alpha' t}$

$$\sigma_{totl} \sim s^{-1} \mathcal{A}(s,0) \sim s^{j_{effective}(0)-1}$$

$$j_{effective}(0) = \alpha(0) > 1$$

Pomeron > Pomeranchukon > Pomeranchuk singularity

Experiments Suggest:

 Exchanging C=+1 colorsinglet "state" with

- Exchanging C=-1 color-singlet "state" with (??) $j_{effective}^{(-)}\simeq 1$
- Weak-coupling: BFKL, etc.
- Non-Perturbative QCD? Answer: AdS/CFT, or Gauge/String Duality.

What is the (bare) Pomeron anyway?

Definition:

The Pomeron ´ the vacuum exchange contribution to scattering at high energies at leading order in 1/N_c expansion.

$$A(s,t) = g_s^2 A_1(s,t,\lambda) + g_s^4 A_2(s,t,\lambda) + \cdots$$

Where $\lambda = g^2 N_c$ & $g_s = 1/N_c$

Martin, Khoze and Ryskin, "Diffractive Higgs production"

Two gluon exchange (Low-Nussinov Pomeron!)

F.E. Low. Phys. Rev. D 12 (1975), p. 163. S. Nussinov. Phys. Rev. Lett. 34 (1975), p. 1286.

BKFL equation for 2 "reggized" gluon ladder is L = 2 SL(2,C) spin chain to one loop order.

 \Box Accidentally "planar" diagrams (e.g. N_c = 1) and conformal.

The QCD Pomeron

In gauge theories with string-theoretical dual descriptions, the <u>Pomeron</u> emerges unambiguously.

Pomeron can be associated with a Reggeized Massive Graviton.

Both the IR (soft) Pomeron and the UV (BFKL) Pomeron are dealt in a unified single step.

R. Brower, J. Polchinski, M. Strassler, and C-I Tan, "The Pomeron and Gauge/String Duality", (hep-th/0603115.)

Gauge/String Duality: QCD at Strong Coupling

C=+1: Pomeron <=> Graviton:

•

$$lpha_0^{(+)} = 2 - 2/\sqrt{\lambda} + O(1/\lambda)$$

 $(symmetric\ tensor: g_{\mu\nu})$

• C=-1: Odderon <=> Kalb-Ramond $\alpha_0^{(-)} = 1 - m_{ads}^2/2\sqrt{\lambda} + O(1/\lambda)$ $(anti - symmetric tensor : b_{\mu\nu})$

 New Questions: Unitarity, Saturation, Confinement, Froissart, etc.?

Froissart bound:

$\sigma_{total}(p+p\to X) \le (\pi/m_0^2)C(m_p/m_0)\log^2(s/s_0) + \cdots$

Questions:

- Saturation? (equality) If so, can C be calculated?
- Events and/phase space responsible for $C(m_p/m_0) > 0$?
- Does AdS/CFT provide a generic mechanism for $C(m_p/m_0) > 0$?

Outline

- Gauge/String Duality
- Pomeron/Odderon as "Fluctuations" in AdS space
 - Graviton/Odderon in AdS becomes a fixed Regge Cut: (Conformal Invariance)
 - Pomeron/Odderon as a Reggeized Massive Graviton/Kalb-Ramond fields: (Confinement)
- Aspects of Analyticity, Unitarity and Confinement
- Conformal Invariance and Transverse Space,
- Phase of Eikonal, Saturation, Confinement.

II: Gauge/String Duality

QCD Pomeron as "metric fluctuations" in AdS

Strong <==> Weak duality
Geometry of AdS/CFT and Scale Invariance
High Energy Scattering
Confinement and Glueball Spectrum
Pomeron as Reggeized Massive Graviton

Ila: Degrees of Freedom

Weak Coupling:

Gluons and Quarks: Gauge Invariant Operators:

 $A^{ab}_{\mu}(x), \psi^a_f(x)$ $ar{\psi}(x)\psi(x), \ \ ar{\psi}(x)D_{\mu}\psi(x)$ $S(x) = TrF_{\mu\nu}^{2}(x), \ O(x) = TrF^{3}(x)$ $T_{\mu\nu}(x) = TrF_{\mu\lambda}(x)F_{\lambda\nu}(x), etc.$

 $b_{mn}(x)$

 $\phi(x), a(x), etc$ $C_{mn}(x)$

 $\mathcal{L}(x) = -TrF^2 + \bar{\psi}\mathcal{D}\psi + \cdots$

Strong Coupling:

 $G_{mn}(x) = g_{mn}^{(0)}(x) + h_{mn}(x)$ Metric tensor: Anti-symmetric tensor (Kalb-Ramond fields): Dilaton, Axion, etc. Other differential forms:

$$\mathcal{L}(x) = \mathcal{L}(G(x), b(x), C(x), \cdots)$$

IIb:
$$\mathcal{N} = 4$$
 SYM Scattering at High Energy

$$\langle e^{\int d^4 x \phi_i(x) \mathcal{O}_i(x)} \rangle_{CFT} = \mathcal{Z}_{string} \left[\phi_i(x,z) |_{z \sim 0} \to \phi_i(x) \right]$$

Bulk Degrees of Freedom from type-IIB Supergravity on AdS₅:

- metric tensor: G_{MN}
- Kalb-Ramond 2 Forms: B_{MN} , C_{MN}
- Dilaton and zero form: ϕ and C_0

$$\lambda = g^2 N_c \to \infty$$

Supergravity limit

- Strong coupling
- Conformal
- Pomeron as Graviton in AdS

Conformal Invariance and Pomeron Interaction from AdS/CFT

Technique: Summing generalized Witten Diagrams Freedman et al., hep-th/9903196 Brower, Polchinski, Strassler, and Tan, hep-th/0003115

One Graviton Exchange at High Energy

- Draw all "Witten-Feynman" Diagrams in AdS₅,
- High Energy Dominated by Spin-2 Exchanges:

$$T^{(1)}(p_1, p_2, p_3, p_4) = g_s^2 \int \frac{dz}{z^5} \int \frac{dz'}{z'^5} \tilde{\Phi}_{\Delta}(p_1^2, z) \tilde{\Phi}_{\Delta}(p_3^2, z) \mathcal{T}^{(1)}(p_i, z, z') \tilde{\Phi}_{\Delta}(p_2^2, z') \tilde{\Phi}_{\Delta}(p_4^2, z')$$

$$\mathcal{T}^{(1)}(p_i, z, z') = (z^2 z'^2 s)^2 G_{++, --}(q, z, z') = (z z' s)^2 G_{\Delta=4}^{(5)}(q, z, z')$$

- Strong Coupling Pomeron has J=2
- Need to consider λ finite.
- For QCD, needs confinement to introduce a scale.

IIc: Geometry of AdS/CFT and Scale Invariance

What is the curved space?

Maldacena: UV (large r) is (almost) an $AdS_5 \times X$ space

$$ds^{2} = r^{2}dx_{\mu}dx^{\mu} + \frac{dr^{2}}{r^{2}} + ds_{\lambda}^{2}$$

Captures QCD's approximate UV conformal invariance

$$x \to \zeta x \ , \ r \to \frac{r}{\zeta}$$
 (recall $r \sim \mu$

Confinement: IR (small
$$r$$
) is cut off in some way

$$r \sim \mu > r_{min} \sim \Lambda_{QCD}$$

For Pomeron: string theory on cut-off AdS_5 (X plays no role)

II-d: Pomeron Propagator at Finite Coupling λ :

due to **Diffusion in AdS** (next section)

II-e: Confinement Deformation: Glueball Spectrum

Four-Dimensional Mass:

$$\mathbf{E}^2 = (\mathbf{p}_1^2 + \mathbf{p}_2^2 + \mathbf{p}_3^2) + \mathbf{M}^2$$

5-Dim Massless Mode:

$$0 = E^2 - (p_1^2 + p_2^2 + p_3^2 + p_r^2)$$

Approx. Scale Invariance and the 5th dimension

==> Hard Scattering (Polchinski-Strassler)

QCD Pomeron <===> Graviton (metric) in AdS

Flat-space String

Conformal Invariance

ĴО

Fixed cut in J-plane: Weak coupling: (BFKL) $j_0 = 1 + \frac{4 \ln 2}{\pi} \alpha N$ Strong coupling: $j_0 = 2 - \frac{2}{\sqrt{\lambda}}$

Confinement

Pomeron in AdS Geometry

III: Pomeron as Diffusion in AdS

Flat Space String Scattering -- Regge Behavior

Diffusion in AdS AdS, C=+1: $\alpha' \tilde{t} \rightarrow \alpha' \Delta_P \equiv \frac{\alpha' R^2}{r^2} \nabla_b^2 + \alpha' \Delta_{\perp P}$

$$s^{2+\alpha'\tilde{t}/2} = \int \frac{dj}{2\pi i} s^j G(j)$$

with
$$G(j) = rac{1}{j-2-lpha'\Delta_P/2}$$

Effective Schrodinger Equation:

$$(j-2-\alpha'\Delta_P/2)G(j;z,z',t) = \delta(z-z')$$

Fixed cut in J-plane:

At
$$t = 0$$
 and $z = e^{-u}$

$$\left[-\partial_u^2 + 4 + 2\sqrt{\lambda}(j-2)\right] = e^u \delta(u-u')$$

Comparison of strong vs weak coupling kernel at t=0

Strong Coupling:

$$\mathcal{K}(r,r',s) = \frac{s^{j_0}}{\sqrt{4\pi \mathcal{D} \ln s}} e^{-(\ln r - \ln r')^2/4\mathcal{D} \ln s}$$
Diffusion in "warped co-ordinate"

$$j_0 = 2 - \frac{2}{\sqrt{g^2 N}} + O(1/g^2 N) \qquad \mathcal{D} = \frac{1}{2\sqrt{g^2 N}} + O(1/g^2 N)$$
Weak Coupling:

$$K(s,k_{\perp},k_{\perp}') \approx \frac{s^{\alpha(0)-1}}{\sqrt{\pi \ln s}} e^{-[(\ln k_{\perp}' - \ln k_{\perp})^2/4\mathcal{D} \ln s]}$$

$$j_0 = 1 + \ln(2)g^2 N/\pi^2 \qquad \mathcal{D} = \frac{14\zeta(3)}{\pi}g^2 N/4\pi^2.$$

$\mathcal{N} = 4$ Strong vs Weak BFKL

Hardwall Regge Spectrum and Cut

Pomeron in QCD

Running UV, Confining IR (large N)

The hadronic spectrum is little changed, as expected. The BFKL cut turns into a set of poles, as expected.

Emergence of 5-dim AdS-Space

Let z=1/r, $0 < z < z_0$, where $z_0 \sim 1/\Lambda_{qcd}$ "Fifth" co-ordinate is size z / z' of proj/target

5 kinematical Parameters:2-d Longitudinal $p^{\pm} = p^0 \pm p^3 \simeq \exp[\pm \log(s/\Lambda_{qcd})]$ 2-d Transverse space: x'_{\perp} - $x_{\perp} = b_{\perp}$ 1-d Resolution:z = 1/Q (or z' = 1/Q')

Summary: Pomeron in QCD

The QCD Pomeron

In gauge theories with string-theoretical dual descriptions, the <u>Pomeron</u> emerges unambiguously.

Pomeron can be associated with a Reggeized Massive Graviton.

Both the IR (soft) Pomeron and the UV (BFKL) Pomeron are dealt in a unified single step.

Unification

• Soft Pomeron: Diffusion in Impact space,

Hard Pomeron: Diffusion in Virtuality,

- Heterotic Pomeron -- G. M. Levin and CIT (ISMD--1993)
- After nearly15 years, <u>Unification</u> through AdS/CFT Correspondence via AdS5
- Pomeron is the Graviton in Curved Space (AdS)

IV: Odderon in AdS

Massless modes of a closed string theory:

metric tensor, Kolb-Ramond anti-sym. tensor, $b_{mn} = -b_{nm}$ dilaton, etc.

 $G_{mn} = g_{mn}^0 + h_{mn}$ ϕ, χ, \cdots

Confinement gives a discrete spectrum of Glueballs: Lattice Data vs AdS IIA Gravity dual Gauge ($\alpha' = 0$)

flat-space expectation

$$F_{\bar{c}b\to\bar{a}d} \equiv \bar{F} = F^+ + F^- \qquad [\sigma_T(\bar{a}b) + \sigma_T(ab)] \sim (2/s) \operatorname{Im} F^+$$
$$F_{ab\to cd} \equiv F = F^+ - F^- \qquad [\sigma_T(\bar{a}b) - \sigma_T(ab)] \sim (2/s) \operatorname{Im} F^-$$

$$\mathcal{T}_{10}^{(+)}(s,t) \to f^{(+)}(\alpha' t) \left[\frac{(-\alpha' s)^{2+\alpha' t/2} + (\alpha' s)^{2+\alpha' t/2}}{\sin \pi (2+\alpha' t/2)} \right]$$

$$\mathcal{T}_{10}^{(-)}(s,t) \to f^{(-)}(\alpha' t) \left[\frac{(-\alpha' s)^{1+\alpha' t/2} - (\alpha' s)^{1+\alpha' t/2}}{\sin \pi (1+\alpha' t/2)} \right]$$

Massless Modes in Flat-Space String Theory

$$|I, J; k\rangle = a_{1,I}^{\dagger} \tilde{a}_{1,J}^{\dagger} |NS\rangle_L |NS\rangle_R |k\rangle$$

$$|h\rangle = \sum_{I,J} h^{IJ} |I,J;k\rangle \quad , \quad |B\rangle = \sum_{I,J} B^{IJ} |I,J;k\rangle \quad , \quad |\phi\rangle = \sum_{I,J} \eta^{IJ} |I,J;k\perp\rangle$$

fluctuations of the metric G_{MN}

anti-symmetric Kalb-Ramond background B_{MN}

dilaton, ϕ

Diffusion in AdS

Flat Space: $t \to \nabla_b^2$

 $\tau = \log(\alpha's) \qquad \langle \vec{b} \mid (\alpha's)^{\alpha_{\pm}(0) + \alpha't/2} \mid \vec{b}' \rangle \to (\alpha's)^{\alpha_{\pm}(0)} \; \frac{e^{-(\vec{b} - \vec{b}')^2/(2\alpha'^2\tau)}}{\tau^{(D-2)/2}}$

AdS5, C=+1:
$$\alpha' \tilde{t} \rightarrow \alpha' \Delta_P \equiv \frac{\alpha' R^2}{r^2} \nabla_b^2 + \alpha' \Delta_{\perp P}$$

$$\tilde{s}^{2+\alpha'\tilde{t}/2} = \int \frac{dj}{2\pi i} \frac{\tilde{s}^j}{j - 2 - \alpha' \Delta_P/2}$$

AdS5, C=-1:

$$\tilde{s}^{1+\alpha'\tilde{t}/2} = \int \frac{dj}{2\pi i} \,\tilde{s}^j \,G^{(-)}(j) = \int \frac{dj}{2\pi i} \,\frac{\tilde{s}^j}{j-1-\alpha'\Delta_O/2}$$

Gauge/String Duality: Conformal Limit

• C=+1: Pomeron <===> Graviton

$$j_0^{(+)} = 2 - 2/\sqrt{\lambda} + O(1/\lambda)$$
.

• C=-1: Odderon <===> Kalb-Ramond Field $j_0^{(-)} = 1 - m_{AdS}^2/2\sqrt{\lambda} + O(1/\lambda)$.

	Weak Coupling	Strong Coupling
C = +1	$j_0^{(+)} = 1 + (\ln 2) \lambda / \pi^2 + O(\lambda^2)$	$j_0^{(+)} = 2 - 2/\sqrt{\lambda} + O(1/\lambda)$
C = -1	$j_{0,(1)}^{(-)} \simeq 1 - 0.24717 \ \lambda/\pi + O(\lambda^2)$ $j_{0,(2)}^{(-)} = 1 + O(\lambda^3)$	$j_{0,(1)}^{(-)} = 1 - 8/\sqrt{\lambda} + O(1/\lambda)$ $j_{0,(2)}^{(-)} = 1 + O(1/\lambda)$

Table 1: Pomeron and Odderon intercepts at weak and strong coupling.

V. Gauge/String Duality Beyond Pomeron

- Sum over all Pomeron graph (string perturbative, 1/N²)
- e Eikonal summation in AdS3
- Constraints from Conformal Invariance, Unitarity, Analyticity, Confinement, etc.
- "non-perturbative" (e.g., blackhole production)

• Eikonal Sum: derived both via Cheng-Wu or by Shock-wave method

$$A_{2\to 2}(s,t) \simeq -2is \int d^2b \ e^{-ib^{\perp}q_{\perp}} \int dz dz' P_{13}(z) P_{24}(z') \left[e^{i\chi(s,b^{\perp},z,z')} - 1 \right]$$

transverse AdS₃ space !!

 $P_{13}(z) = (z/R)^2 \sqrt{g(z)} \Phi_1(z) \Phi_3(z)$

$$P_{24}(z) = (z'/R)^2 \sqrt{g(z')} \Phi_2(z') \Phi_4(z')$$

$$\chi(s, x^{\perp} - x'^{\perp}, z, z') = \frac{g_0^2 R^4}{2(zz')^2 s} \mathcal{K}(s, x^{\perp} - x'^{\perp}, z, z')$$

• <u>Saturation:</u>

$$\chi(s, x^{\perp} - x'^{\perp}, z, z') = O(1)$$

• Universality:

• Universality:

By choosing wave functions, Φ , can treat DIS, Onium-Onium, Proton-Proton, etc., on equal footing.

$$\chi(s, x^{\perp} - {x'}^{\perp}, z, z') = O(1)$$

Phase space:

Saturation:

$$s \leftrightarrow 1/x$$

 $x_{\perp} \leftrightarrow impact \ space$
 $z \leftrightarrow 1/Q^2 \leftrightarrow virtuality$

$$\frac{\text{Conformal Invariance:}}{\chi(s, x^{\perp} - {x'}^{\perp}, z.z') \to G(s, v)}$$

$$v = rac{(x^{\perp} - {x'}^{\perp})^2 + (z - z')^2}{2zz'}$$

<u>Unitarity:</u>

•Local Scattering in AdS₃ of "String Bits" or "Partons"

$$\begin{aligned} A_{2\to2}(s,t) \simeq \int d^2b \ e^{-ib^{\perp}q_{\perp}} \int dz dz' P_{13}(z) P_{24}(z') \widetilde{A}(s,b^{\perp},z,z') \\ \widetilde{A}(s,b^{\perp},z,z') = -2is \left[e^{i\chi(s,b^{\perp},z,z')} - 1 \right] \\ \operatorname{Im} \widetilde{A}(s,b^{\perp},z,z') \ge (1/4s) |\widetilde{A}(s,b^{\perp},z,z')|^2 \,. \end{aligned}$$

 "Parton-Hadron Duality": Equiv to Multi-Channel eikonal for hadrons in 2-dim Impact Space

$$A_{n_4,n_3 \leftarrow n_2,n_1}(s,t) = -2is \int d^2 b e^{-ibq_\perp} \left[e^{i\widehat{\chi}(s,b)} - 1 \right]_{n_4,n_3:n_2,n_1}$$
$$\chi_{n_4n_3;n_2n_1}(s,b) = \int dz \, dz' \, P_{n_3n_1}(z) P_{n_4n_2}(z') \chi(s,b,z,z')$$

 For eikonal <u>real</u>, quasi-elastic scattering only, and no scattering into "<u>long-string</u>" states, (i.e., no soft multiperipheral jets.)

•With J ~ 2, eikonal predominantly real:

$$\frac{Re\chi}{Im\chi} = tan(j_0 - 1)\pi/2$$

 $|\operatorname{Re}[\chi]| \leq |\operatorname{Im}[\chi]|, \quad 1 \leq J_0 \leq 1.5$ $|\operatorname{Re}[\chi]| \geq |\operatorname{Im}[\chi]|, \quad 1.5 \leq J_0 \leq 2$

Inelastic Production

•Generalized Cutting Rules

 $\cos(j_0\pi)|\chi|^2 = \left[1 - 2\sin^2(j_0\pi/2) - 2\sin^2(j_0\pi/2) + 2\sin^2(j_0\pi/2)\right]|\chi|^2$

$$j_0 = 1.0: -1 = 1 - 2 - 2 + 2$$

$$j_0 = 1.5: 0 = 1 - 1 - 1 + 1$$

$$j_0 = 2.0: 1 = 1 - 0 - 0 + 0$$

• Real World: $j_0 \sim 1.5$ and $\lambda \sim O(1)$

Analyticity:

• Amplitude is <u>crossing even</u>.

$$\mathcal{K}(s, b^{\perp}, z, z') = -(zz'/R^4)G_3(j_0, v) \\ \times \widehat{s}^{j_0} \int_{-\infty}^{j_0} \frac{dj}{\pi} \frac{(1+e^{-i\pi j})}{\sin \pi j} \,\widehat{s}^{(j-j_0)} \,\sin\left[\xi(v)\sqrt{2\sqrt{\lambda}(j_0-j)}\right]$$

$$\cosh \xi = v + 1$$
 $e^{\xi} = 1 + v + \sqrt{v(2 + v)}$

- With λ large, Amplitude has a <u>Large Real Part</u>. Purely real at λ →∞.
- Need to know both Re [K] and Im [K] for all s>0.
- Im [K] can be found more easily. Re [K] can be found by <u>Derivative Dispersion Relation</u>.

Im [K] can be evaluated analytically, exhibiting
 <u>Diffusion in AdS</u>, with diffusion time, τ ~ log s.

Im[
$$\mathcal{K}$$
] = $(zz'/R^4)G_3(j_0, v)(\sqrt{\lambda}/2\pi)^{1/2}\xi \ e^{j_0\tau} \ \frac{e^{-\sqrt{\lambda}\xi^2/2\tau}}{\tau^{3/2}}$

• With λ large, derivative dispersion relation simplifies,

$$\partial_{\tau}[e^{-2\tau}\operatorname{Re}[\mathcal{K}]] = -(2/\pi)e^{-2\tau}\operatorname{Im}[\mathcal{K}]$$

• Re [K] can again be expressed simply as

$$\begin{aligned} \operatorname{Re}[\mathcal{K}] &\to (\sqrt{\lambda}/\pi) \operatorname{Im}[\mathcal{K}] \sim e^{j_0 \tau} \; \frac{e^{-\sqrt{\lambda} \xi^2/2\tau}}{\tau^{3/2}} \,, & \text{if} \quad \log \widetilde{s} \; > (\sqrt{\lambda}/2) \; \xi \\ &\to \; \frac{2}{\pi} \widehat{s}^2 \, \left(\frac{zz'}{R^4}\right) \; G_3(2,v) + O(e^{j_0 \tau}) \;, & \text{if} \quad \log \widetilde{s} \; < (\sqrt{\lambda}/2) \; \xi \end{aligned}$$

Scattering in Conformal Limit:

Use the condition:
$$\chi(s, x^{\perp} - x'^{\perp}, z, z') = O(1)$$

Elastic Ring:

$$b_{\text{diff}} \sim \sqrt{zz'} \ (zz's/N^2)^{1/6}$$

$$\sigma_{total} \sim s^{1/3}$$

Inner Absorptive Disc:

$$b_{\text{black}} \sim \sqrt{zz'} \quad \frac{(zz's)^{(j_0-1)/2}}{\lambda^{1/4}N} \qquad b_{\text{black}} \sim \sqrt{zz'} \left(\frac{(zz's)^{j_0-1}}{\lambda^{1/4}N}\right)^{1/\sqrt{2}\sqrt{\lambda(j_0-1)}}$$

Inner Core: "black hole" production ?

Unitarity, Confinement and Froissart Bound

Mass of the lightest tensor Glueball provides scale

$$e^{-m_0 b} / \sqrt{m_0 b}$$

Elastic Ring:

$$b_{\text{diff}} \simeq \frac{1}{m_0} \log(s/N^2 \Lambda^2) + \dots$$

Absorptive Disc:

Inner Core:

Saturation of Froissart Bound

- The Confinement deformation gives an exponential cutoff for b > b_{max} ~c log (s/s₀),
- Coefficient c ~ I/m₀,
 m₀ being the mass of
 lightest tensor glueball.
- There is a shell of "conformal region" of width $\Delta b \sim \log(s/s_0)$ Froissart is respected and

Froissart is respected and saturated.

b_{max} determined by confinement.

Applications beyond the LHC QCD influence on UHE v detection Importance of wee-x parton distributions

45

VI. Summary and Outlook

- Provide meaning for Pomeron non-perturbatively from first principles.
- Realization of conformal invariance beyond perturbative QCD
- New starting point for unitarization, saturation, etc.
- Phenomenological consequences, Diffractive Higgs production at LHC (in progress).

Diffractive Higgs Production (Building Blocks)

Double Regge (Pomeron) exchange

□New issues:

- Pomeron-Pomeron Glueball vertex: $V(q_1^{\perp}, q_2^{\perp}, q^{\perp}, z, z')$
- Top quark loop: $F^2(x)$ source at z = 0;
- Bulk to boundary prop from Pomeron-Pomeron vertex to F²(x)

References:

- R. Brower, J. Polchinski, M. Strassler, and C-I Tan, "The Pomeron and Gauge/String Duality", hep-th/0603115.
- R. Brower, M. Strassler, and C-I Tan, hep-th/0707.2408.
- R. Brower, M. Strassler, and C-I Tan, hep-th/0710.4378.
- R. Brower, M. Djuric, and C-I Tan, arXiv:0812.0354.
- Other related work, e.g., L. Cornalba, et al., (hep-th/0710.5480),
- Y. Hatta, E. Iancu, and A. H. Mueller, (hep-th/0710.2148),
- E. Levin, et al. (arXiv:0811.3586) and (arXiv:0902.3122).
- Many others.

Pomeron and Odderon

$$TrP_{\sigma}[e^{i \oint d\sigma x'_{\mu}(\sigma)A_{\mu}(x)} \pm e^{-i \oint d\sigma x'_{\mu}(\sigma)A_{\mu}(x)}]$$

C=+1

$$\left\langle \mathcal{P}_{\mu\nu}(x,y)\mathcal{P}_{\mu'\nu'}(x',y')\right\rangle \qquad \qquad \mathcal{P}_{\mu\nu}(x,y) = tr(A_{\mu}(x)A_{\nu}(y)) = (1/2)\delta_{ab}A^a_{\mu}(x)A^b_{\nu}(y)$$

C = -1

$$\langle \mathcal{O}_{\mu\nu\rho}(x,y,z) \mathcal{O}_{\mu'\nu'\rho'}(x',y',z') \rangle \qquad \mathcal{O}_{\mu\nu\rho}(x,y,z) = tr\left(\{A_{\mu}(x),A_{\nu}(y)\}A_{\rho}(z)\right) = (1/2)d_{abc}A^{a}_{\mu}(x)A^{b}_{\nu}(y)A^{c}_{\rho}(z)$$

AdS/CFT Dictionary

$$\langle e^{\int d^4x \phi_i(x)\mathcal{O}_i(x)} \rangle = \mathcal{Z}_{string} \left[\phi_i(x,z) |_{z \sim 0} \to \phi_i(x) \right]$$

$$S = \int d^4x \det[G_{\mu\nu} + e^{-\phi/2}(B_{\mu\nu} + F_{\mu\nu})] + \int d^4x (C_0F \wedge F + C_2 \wedge F + C_4) \rangle$$

Remarks on AdS₃ Propagator:

$$G_3(j; x^{\perp} - x'^{\perp}, z, z') \sim \langle x^{\perp}, z \mid \frac{1}{2\sqrt{\lambda}(j-2) + H_{+,-}} \mid x'^{\perp}, z' \rangle$$

• Conformal Invariance, a function of a single AdS3 invariant.

$$v = \frac{(x_{\perp} - x'_{\perp})^2 + (z - z')^2}{2zz'}$$

- Large $\lambda \Rightarrow j \sim 2$.
- λ infinite, s large and fixed \Rightarrow j=2, and Graviton exchange
- <u> λ and s infinite</u>, $\log s = O(\sqrt{\lambda}) \Rightarrow$ Pomeron exchange, in order to resolve "fine structure", with

$$j \simeq j_0 = 2 - \frac{2}{\sqrt{\lambda}}$$
 51

Strong Coupling Pomeron Propagator --Conformal Limit

AdS-3 propagator:

$$\mathcal{K}(j,x_{\perp}-x_{\perp}',z,z') = rac{1}{4\pi z z'} rac{\left[y+\sqrt{y^2-1}
ight]^{(2-\Delta_+(j))}}{\sqrt{y^2-1}} \,,$$

$$y \pm 1 = rac{(z \mp z')^2 + (x_\perp - x'_\perp)^2}{2zz'}$$

$$\Phi_{n,\nu}(b_1 - b_0, b_2 - b_0) = \left[\frac{b_1 - b_2}{(b_1 - b_0)(b_2 - b_0)}\right]^{i\nu + (1+n)/2} \left[\frac{\bar{b}_1 - \bar{b}_2}{(\bar{b}_1 - \bar{b}_0)(\bar{b}_2 - \bar{b}_0)}\right]^{i\nu + (1-n)/2}$$

Spin-Dimension Curve

inversion symmetry: $\Delta \rightarrow 4 - \Delta$

J vs DGLAPP Curves

$$\Delta^{(\pm)}(j) = 2 + \sqrt{2} \lambda^{1/4} \sqrt{(j - j_0^{(\pm)})}$$

54