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Theoretical approaches to description of diffractive processes at high energies are discussed.
It is pointed out that inelastic diffractive processes should be suppressed at small impact
parameters. Important role of the pion exchange for analytic structure of the pomeron
trajectory is emphasised. Models for large mass diffraction and recent calculations of
survival probabilities are reviewed.

1 Introduction

Diffractive processes (elastic and inelastic) constitute a substantial part (about 1/2) of the total
interaction cross sections of hadrons at high energies. Investigation of these processes provides
an important information on mechanisms of high-energy interactions. There are important
problems of QCD which can be studied in diffractive processes:

a) Nature of the pomeron in QCD.

b) Role of the s-channel unitarity and multi-pomeron exchanges.

¢) Small-x problem and ”saturation” of parton densities at x — 0.

d) Violation of Regge and QCD-factorisations in diffractive processes.

Elastic scattering at high energies is a classical example of diffractive process. Absorption of
the initial wave due to many inelastic channels leads by unitarity to elastic diffractive scattering.

Inelastic diffractive processes were first considered by E.L. Feinberg and I.Ya. Pomer-
anchuk [1] and elegant formulation in terms of the eigen-states was given by M.L. Good and
W.D. Walker (GW) [2]. In this approach cross section for inelastic diffraction is related to a
dispersion of eigen-amplitudes. Thus in a black disk limit inelastic diffraction is absent (exists
at the edge of the disk only). This is an s-channel view on diffractive scattering. Note that
GW-approach assumes a separation of diffractive and multiparticle states. This is not true in
general for production of large mass states, which we will discuss in terms of the t-channel or
Regge approach.

In the t-channel approach amplitudes of diffractive processes are described by an exchange of
the pomeron, which has vacuum quantum numbers (positive signature and parity and C-parity
, isospin I=0) (see for example review [3]. An increase with energy of the total interaction cross
sections indicates that an intercept of the pomeron is larger than unity. An exchange by a
Regge pole with A = ap(0) —1 > 0 leads to a violation of the s-channel unitarity and for such
“supercritical” pomeron multi-pomeron exchanges in the t-channel are very important. They
restore unitarity and make theory consistent with Froissart bound.



2 Unitarity Effects in Gribov’s Approach

A general method of calculation of multi-pomeron contributions to amplitudes of diffractive
processes was formulated by V.N. Gribov [4]. In this approach a contribution of two-pomeron
exchange (PP) to the process of elastic scattering can be expressed, using analyticity and
unitarity for pomeron-particle scattering amplitudes, as the sum over all intermediate diffractive
states in the s-channel.

In the same way amplitudes for nP-exchanges are expressed through all possible diffractive
intermediate states. This result is based on general properties of Feynman diagrams and is valid
in QCD. It allows to build approximate schemes for calculation of multi-pomeron contributions.
The simplest approximation corresponds to an account of elastic intermediate states only. It
leads to the eikonal approximation for scattering amplitudes. For elastic scattering amplitudes
in the impact parameter space:

I f(s,b) =5 (1= e2), (1)
where the eikonal 2 = —4idp(s,b) is the Fourier transform of the pomeron pole exchange.

Low mass diffractive states are often approximated by several resonance states. In this
case the same method leads to Eq. (1) with 2 being a matrix, which elements correspond to
transitions between different diffractive states. The simplest treatment is a diagonalisation of
this matrix. Thus an account of the low mass diffraction in the Gribov’s method is equivalent
to the Good-Walker [2] approach to inelastic diffraction.

A simplest generalisation of the eikonal model, which takes into account inelastic diffractive
intermediate states is so called “quasi-eikonal” model, where the amplitude f(s,b) has the form
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The function §p(s,b) ~ s and it becomes large at very high energies. In this limit the
scattering amplitude for elastic scattering f(s,b) — /2 in the eikonal model (scattering on a
black disk) and f(s,b) — 1/2C in the quasi-eikonal model (scattering on a grey disc). This
property of the quasi-eikonal model is closely related to the fact that one of the eigen-states for
the diffractive matrix p has in this model a zero eigen-value.

This is a crude approximation, which takes into account a big difference in the interaction
cross section of hadrons with different transverse sizes. Configurations of quarks inside hadrons
with small transverse size r have total interaction cross sections ~ 72, because hadrons in QCD
interact as colour dipoles. There is a distribution of quarks and gluons inside colliding hadrons
with different values of r so one can expect that there will be a slow approach to the black disk
limit for elastic scattering amplitude as s — oco. In this limit the effective radius of interaction
increases as In s. Thus total interaction cross sections for the supercritical Pomeron theory have
Froissart type behaviour o(*9) ~ In?(s) as s — co.

Unitarisation effects due to multi-pomeron exchanges most strongly influence amplitudes of
inelastic diffractive processes. In the eikonal approximation a suppression of cross section for
inelastic diffractive process S2 is:
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This expression is easily generalised to the case of several diffractive channels. The same
Eq. (2) is valid for each diagonal state and it is necessary to sum over all diagonal states (with
corresponding weights).

The quantity  increases with energy as s= and becomes large at very high energy. Ac-
cording to Eq. (2) cross sections of inelastic diffractive processes becomes negligible at small
impact parameter and is concentrated at the edge of interaction region at b > 1fm and the
radius of this region increases with energy as In s. Note that models based on perturbative QCD
are not valid in this peripheral region. On the other hand account of w7-cut in the pomeron
trajectory play an important role in this region (especially in view of smallness of o5 (t = 0)).
An imaginary part of the P-trajectory due to wm-cut has the form [5]
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where C(j) = %, so = 1 GeV?, 1 is the pion mass and Bp(t) is the pomeron residue in
mr-scattering. Due to smallness of y the pion cut has an important influence on the pomeron

trajectory [6]. In particular it gives a contribution to the slope of the pomeron trajectory
tot
da/p(0) = £2= (In(%) — 1) ~ 0.05 GeV~2 for m ~ 1GeV, which can be considered as a lower
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bound on the slope of the pomeron. The singularity in the P-trajectory leads also to a sub-

stantial curvature in the pomeron trajectory in the small-t region. It is essential for resolving
problems with s-channel unitarity in inelastic diffractive processes at super-high energies [3]

The value of S? is not universal: it depends on behaviour of a matrix element M(s,b) on
impact parameter b.

3 Interplay of Soft and Hard Diffraction

At very high energies diffractively produced system can contain hard subsystem. For example
diffractive production of dijets, W, Z-bosons and heavy quarks. Especially interesting class
of hard diffractive processes is exclusive central production of Higgs boson. It allows to study
Higgs bosons in a very clean environment and gives a possibility to determine quantum numbers
of Higgs. In hard diffraction the subprocess of a heavy state production can be calculated using
QCD perturbation theory. The simplest inclusive diffractive process is a diffractive dissociation
of a highly virtual photon. In this case the photon interacts with a quark and a study of these
processes at HERA gave a possibility to determine distributions of quarks and gluons in the
pomeron. These distributions and QCD factorisation can be used to predict cross sections of
hard inclusive diffractive processes in hadronic interactions. However both QCD and Regge-
factorisations in hard diffractive processes are violated due to multi-pomeron exchanges. They
strongly modify predictions based on a single pomeron exchange. This is a manifestation of an
interplay of soft and hard diffraction. CDF data [7] show that cross section of diffractive dijet
production about an order of magnitude smaller than prediction based on QCD factorisation
and partonic distributions extracted from HERA results. Dependence on § (distribution of
partons in the pomeron) is also substantially different from the predicted one. Calculation
of suppression in the two-channel eikonal model [8] allows to reproduce both the observed
suppression and (-dependence.

It is interesting that the same suppression is observed for double gap (double pomeron
exchange) events at Tevatron [9]. This observation is in accord with a dominance of eikonal-
type rescatterings [10].



The problem of calculation of survival probability and its energy dependence is very impor-
tant for prediction of cross section of double-pomeron production of Higgs bosons and I shall
return to this problem after discussion of influence of large mass diffraction on a magnitude of
suppression of hard diffractive processes.

4 Large Mass Diffraction and Interaction of Pomerons

So far we have considered the low mass excitations in diffractive intermediate states. A mass of
diffractively excited state at large s can be large. The only condition for diffraction dissociation
is M? < s. For large masses of excited states M2 ~ (1—z)s and rapidity gap Ay ~ In(s/M?) =
&'. The large mass behaviour of the pomeron-particle amplitudes is described by the triple-
pomeron and multi-pomeron diagrams.

The cross section for inclusive single diffraction dissociation in the Regge pole model can be
written in the following form
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déodt - 167 |GP(§/7t)|2 O—ggt)(fg,t) (5)

where & = In(M?/so) and G, (€', t) = n(ay,(t)) exp[(a,(t) —1)€'] is the pomeron Green function.

The quantity UPOt)(&, t) can be considered as the pomeron-particle total interaction cross
section [3]. At large M? this cross section in Regge-model has the same behaviour as usual

cross sections ©-1
o M2\ O
(t t) M2 2922 TPP ( s ) (6)

where the r3%(¢) is the triple-reggeon vertex , which describes coupling of two pomerons to
reggeon .

In this kinematic region s > M? > m? the inclusive diffractive cross section is described
by the triple-Regge diagrams and has the form

s ak(O)fl
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The pomeron-proton total cross section and triple-Regge vertices 75 P,T{D p have been deter-
mined from analysis of experimental data on diffractive production of particles in hadronic
collisions (see review [3]). Account of multi-pomeron rescattering for triple-reggeon diagram in
analysis of large mass diffraction dissociation leads to a substantial change (increase) in values
of triple-reggeon couplings (for recent analysis see [12, 13]).

It is clear that for very large masses it is not enough to consider the triple-pomeron contribu-
tion only as it violates unitarity for the pomeron-particle scattering amplitude. An important
theoretical question is: what is the structure of the vertices for n pomeron to m pomeron tran-
sitions. The simplest approximation is to assume an eikonal-type structure for the pomeron-
particle amplitudes at large M?:

Imn = Cngrn (8)

where ¢ and g are some functions of ¢t. This behaviour of vertices follows from multi-peripheral
model and is natural from the t-channel unitarity point of view. It was used in [11] (KPTM)



to sum all diagrams with interactions of pomerons. This model leads to a good description of
total, elastic and single diffraction dissociation cross sections (ogp) in pp(pp) interactions [11]
with A =~ 0.2. It is worth to note that without multi-pomeron effects cgp has too fast increase
with energy and exceeds experimentally observed cross section by a factor ~ 10.

In recent analysis of single and double diffraction dissociation [13] a simplified version of
KPTM was used, where besides eikonal rescatterings between colliding protons eikonalization
of each leg of the triple-reggeon diagrams was taken into account. More complicated t-channel
iterations, which become important at extremely high energies, were neglected. This model
gives a very good description of data on diffractive production from energies of fixed targets up
to Tevatron.

An important question is how to apply Abramovsky, Gribov, Kancheli (AGK) cutting
rules [14] in presence of multi-pomeron vertices. This is necessary in order to describe processes
of multi-particle production in presence of interactions between pomerons. Strictly speaking
AGK cutting rules were not proved for n — m pomeron transitions. For simplest application
of AGK rules the problem was considered by S. Ostapchenko [15, 16] and generalisation of the
Quark-Gluon Strings Model (QGSM) [17], was formulated in a Monte Carlo version.

In treatment of diagrams with interactions between pomerons it is necessary to take into
account that the notion of the pomeron exchange is meaningful for large rapidity gaps only
(usual choice y > yo, with y, = In(10) = 2.3). Thus a cutoff at small rapidities for each pomeron
line should be introduced. It leads to a natural limitation to the number n of the t-channel
iterations of pomeron exchanges (or number of gaps) at each initial energy : n < In(s/s¢)/yo
with s = 1GeV?. This threshold effect was taken into account in Ref. [11] and should be
accounted for in all realistic calculations with pomeron interactions. It plays an important role
in calculations of survival probabilities (see below).

The Durham group (KMR) has made recently a new fit of data on cross sections of diffractive
processes [18, 19]. All n — m pomeron transition were taken into account in the framework of a
partonic model, which lead to the behaviour g, ~ nmg™*™, which is somewhat different from
the one discussed above in the eikonal approximation. Summation of diagrams was performed
by numerical solution of a system of highly nonlinear equations for amplitudes. To account for
semi-hard and hard interactions three types of pomeron poles were introduced. Formulae for
cross sections of different inelastic diffractive processes were obtained using some probabilistic
arguments (and not cutting rules as in the standard approach). In this model it is possible to
obtain a reasonable description of total cross section for pp-interaction, its elastic cross section
in the diffraction cone region and cross sections of single and double diffraction. In the version
of the model, which takes into account transverse degrees of freedom [19], for intercepts of
pomerons A = ap(0) — 1 values close to 0.3 were obtained.

A different approach was used by the Tel-Aviv group (GLM) [20]. Arguments, based on
a small value of the pomeron slope, were used to justify applicability of perturbative QCD
(PQCD) for diffractive processes. Motivated by PQCD the authors used the triple-pomeron
interaction only with maximal number of pomeron loops. The last assumption may be reason-
able for interaction of very small dipoles, but is difficult to justify for interaction of protons.
The diagrams without pomeron loops (for example the diagram with a single triple-pomeron
vertex) should be taken into account for self-consistency. It is known [21, 22] that the one di-
mensional approximation, used in calculations of GLM, leads asymptotically to decreasing total
cross sections. GLM propose to use their model in a limited energy range. I have emphasised
above that inelastic diffractive processes are concentrated at large impact parameters and that
nonperturbative effects (for example two-pion cut in the pomeron trajectory) are important in



this region. The fit of GLM to total pp-interaction cross section, differential cross section of
elastic scattering and SD and DD-integrated cross sections [20] lead to the value A = 0.33 for
the intercept of the pomeron. Note that the threshold effects, discussed above, have not been
taken into account both by GLM and KMR groups

A general feature of models, which take into account interactions between pomerons (“en-
hanced” diagrams), is a slower increase with energy of total cross sections. For example predic-
tions of both KMR and GLM models for the total cross section of pp interaction at LHC energy
are close to 90 mb, which is substantially smaller than in models without these interactions.
Same effect exists in the model of Ref. [11], though the corresponding cross section is closer
to 100 mb. Values of the pomeron intercept is substantially higher than in the eikonal-type
models.

There is an interesting problem of influence of pomeron interactions on survival probabilities
for hard processes [8, 23, 24]. The largest difference in KMR and GLM models is in predictions
for survival probabilities due to enhanced diagrams. For DPE Higgs production at LHC an
account of threshold effects is very important and calculation of KMR in a simplified model, but
with account of these effects [25], show that for central Higgs production an extra suppression
due to pomeron interactions is insignificant. On the other hand in GLM model a modification
of survival probabilities due to enhanced diagrams is very strong: at LHC there is a decrease
by a factor =~ 16. For DPE processes at Tevatron GLM model predicts a decrease of survival
probability by an extra factor 3.5. It is not clear how these factors depend on the mass of
the produced hard system. A comparison of CDF data on diffractive dijet production [7] with
prediction based on QCD factorisation and survival factor of two channel eikonal model show
that extra suppression due to enhanced diagrams does not exceed 50%. Analogous restriction
follows from CDF data on DPE dijet production [9, 26].

Thus up to energies of Tevatron interaction between pomerons play a minor role in hard
diffractive processes. This is to a large extent related to the phase-space limitations. For soft
diffraction enhanced diagrams are important and lead to a change of parameters of the “bare”
pomeron in reggeon theory. At LHC effects of enhanced diagrams will be observable in hard
diffractive processes. Their influence on survival probabilities can be studied, in particular, in
diffractive production of jets (with not too large masses).

My main conclusions are:
unitarity effects due to multi-pomeron interactions are very important for diffractive processes
at very high energies. They lead to a violation of both Regge and QCD-factorisations for hard
diffraction.

Inelastic diffraction is peripheral in impact parameter space and account of mm-cut in the
pomeron trajectory is necessary for proper description of amplitudes.

Experimental investigation of diffractive processes at LHC will give an important informa-
tion on QCD-dynamics at high energies.
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