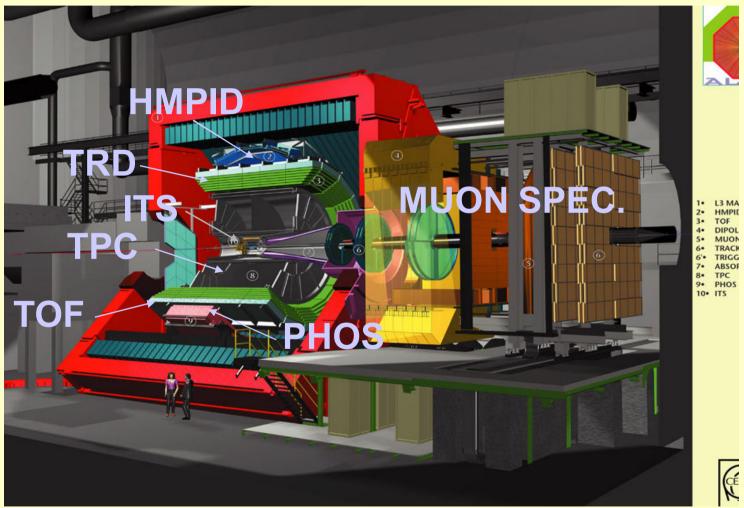
Diffraction at ALICE

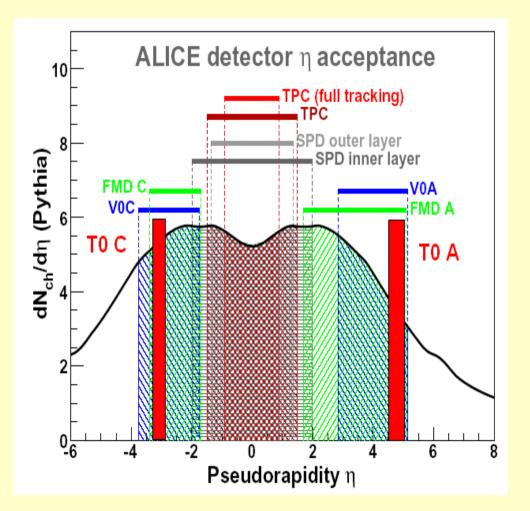
- ALICE detector
- Diffractive gap trigger in ALICE
- Pomeron signatures in p-p
- Odderon signatures in p-p
- Signature of gluon saturation in diffraction
- Conclusions, outlook


The ALICE experiment

Acceptance central barrel -0.9 < η < 0.9

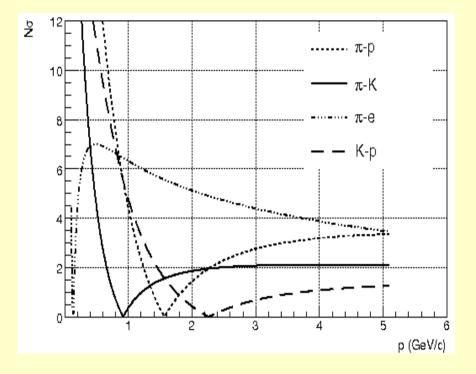
Acceptance muon spectr.

 $-2.5 < \eta < -4.$

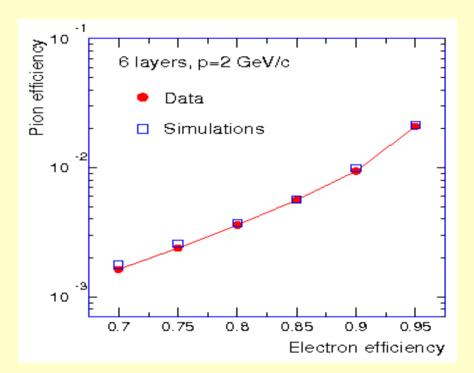


Rainer Schicker, Uni Heidelberg

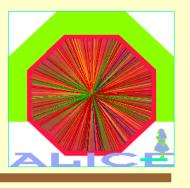
ALICE diffractive gap trigger


 \rightarrow additional forward detectors (no particle identification) $1 < \eta < 5$ $-4 < \eta < -1$ \rightarrow definition of gaps $\eta_+, \eta_$ p-p luminosity $L = 5 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$: \rightarrow one interaction/ 80 bunches diffractive L0 trigger (hardware): Pixel or TOF mult (central barrel) gap η_+ : $3 < \eta < 5 \rightarrow \Delta \eta \sim 0.5$ gap η -: -2 < η < -4 $\rightarrow \Delta \eta \sim 0.5$ high level trigger (software): $-3.7 < \eta < 5$

EDS09, jun 29 – july 3, 2009, CERN


Rainer Schicker, Uni Heidelberg

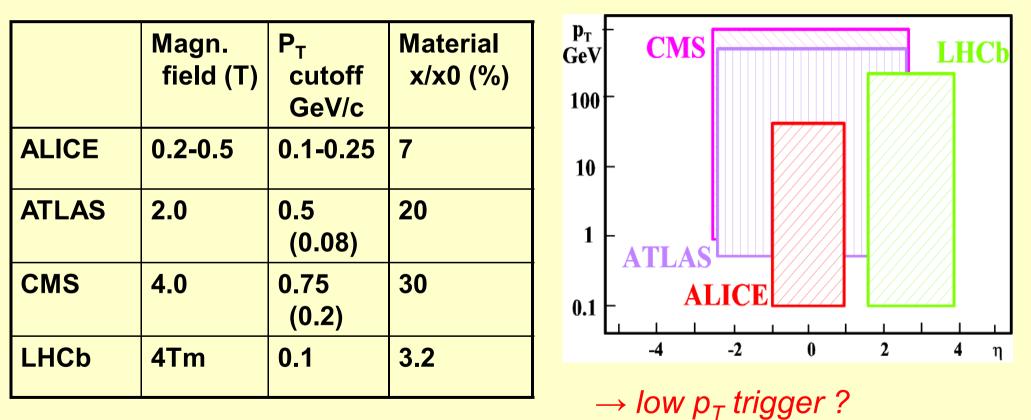
ALICE central barrel particle identification


Particle identification by dE/dx in central barrel as function of momentum In addition time of flight information for non-relativistic

Rainer Schicker, Uni Heidelberg

Electron-pion separation in TRD as function of momentum

 \rightarrow identify vector mesons by e⁺e⁻ decay

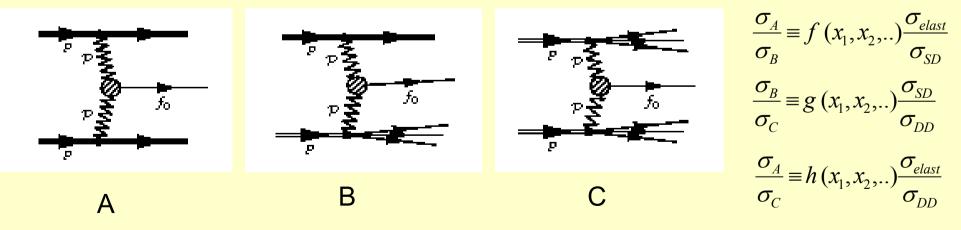


ALICE central barrel comparison to other LHC detectors

low magnetic field

η-pt acceptance

 \rightarrow good ALICE acceptance for ϕ , J/Psi, Ψ by electron decays ($p_T > 0$

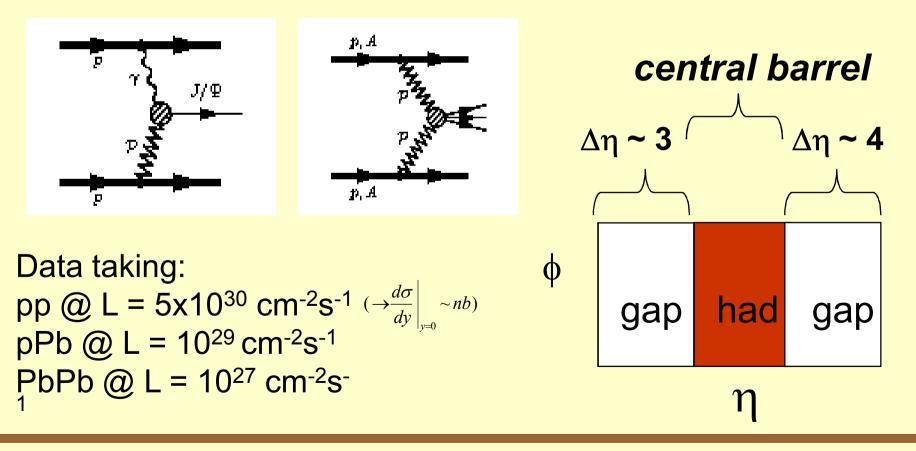

Rainer Schicker, Uni Heidelberg

ALICE forward calorimeter

- neutron calorimeter on each side
 - Placed at 116 m from interaction region
 - Measures neutral energy at 0°
- Diffractive events with and without proton breakup:
 - pp \rightarrow ppX : no energy in zero degree calorimeters
 - pp \rightarrow pN*X, N*N*X : energy in one or in both calorimeters

Identify the three topologies:

 \rightarrow what are $f(x_i)$, $g(x_i)$, $h(x_i)$?


Rainer Schicker, Uni Heidelberg

ALICE diffractive physics

• ALICE acceptance matched to diffractive central production:

 γ -pomeron, double pomeron, odderon-pomeron

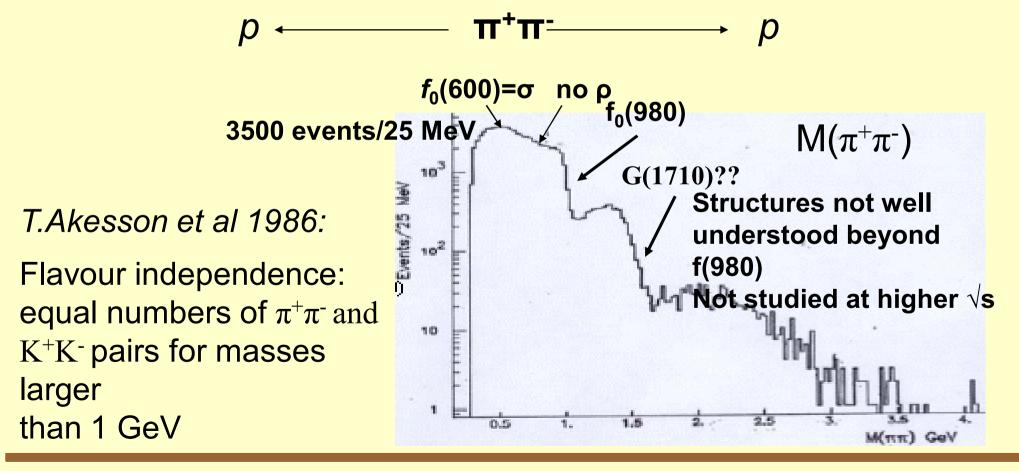
Pomeron signatures

POMERON: C = +1 part of gluon color singlet exchange amplitude Compare pomeron-pomeron fusion events to min bias inelastic events

- 1) Enhanced production cross section of glueball states: *study resonances in central region when two rapidity gaps are required*
- 2) Slope pomeron traj. α ~ 0.25GeV⁻² in DL fit, α ~ 0.1GeV⁻² in vector meson production at HERA, t-slope triple pom-vertex < 1GeV⁻²

 \rightarrow mean $k_t~$ in pomeron wave function $\alpha^{\text{`}} \sim 1/k_t^2~$ probably $k_t > 1~$ GeV

 \rightarrow <p_7> secondaries in double pomeron > <p_7> secondaries min bias


3) $k_t > 1 \text{ GeV}$ implies large effective temperature

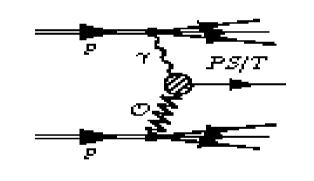
Rainer Schicker, Uni Heidelbergos enhanced EDS09, jun 29 – july 3, 2009, CERN

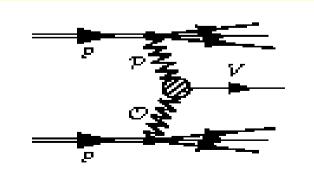
Central exclusive $\pi^+\pi^-$ production at $\sqrt{s} = 63$ GeV

Data taken by Axial Field Spectrometer at ISR \sqrt{s} = 63 GeV (R807) very forward drift chambers added for proton detection

Rainer Schicker, Uni Heidelberg

Signature Odderon cross section


ODDERON: C = -1 part of gluon color singlet exchange amplitude Look at exclusive processes with rapidity gaps


Examples:

diffractive pseudo scalar and tensor meson production: C = +1 states

diffractive vector meson production: C = -1 *states*

 \rightarrow measure cross sections

Rainer Schicker, Uni Heidelberg

The hunt for the Odderon

- Production cross sections in pp at LHC energies
 - diffractive production: $\pi_0, \eta, \eta_c (J^{PC} = 0^{-+}), a_2(2^{++})$
 - → contributions from Photon-Photon, Photon-Odderon, Odderon-Odderon
 - Look for diffractive J/ Ψ production: $J^{PC} = 1^{--}$
 - → Photon-Pomeron, Odderon-Pomeron contributions

 \rightarrow such an experimental effort is a continuation of physics programs carried out at LEP ($\gamma\gamma$) and HERA (γ -Odderon)

- First estimates by Schäfer, Mankiewicz, Nachtmann 1991
- pQCD estimate by Bzd $\frac{dq}{dy}$ Motyka, Szymanowski, Cudell – Photon: t-integrated $\frac{d\sigma}{dy}$ ~ 15 nb (2.4 - 27 nb) – Odderon: t-integrated ~ 0.9 nb (0.3 - 4 nb) At L = 5x10³⁰ cm⁻²s⁻¹:
 - \rightarrow 0.15 J/ Ψ in ALICE central barrel in 1 s, 150k in 10⁶ s

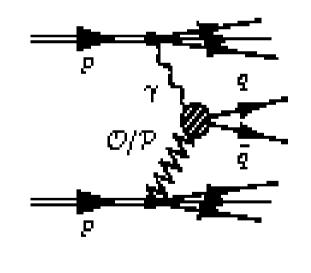
 \Rightarrow **10e** http://www.section.contribution by analysistribution (Odderon harder p_T spectrum)

Rainer Schicker, Uni Heidelberg

Signature Odderon interference

Cross sections contain squared Odderon
amplitudes

→ Odderon-Pomeron interference !


 $d\sigma \sim |A\gamma(A_P + A_O)|^2 d^N q$

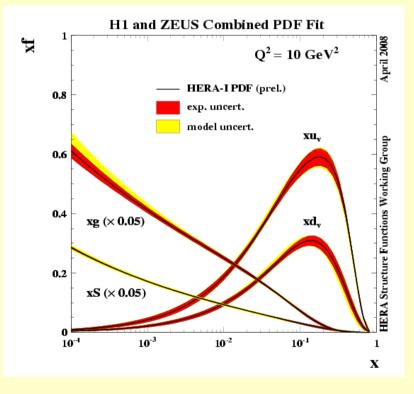
 $\sim |A_P|^2 + 2Re(A_PA_O^*) + |A_O^*|^2$

→ look at final states which can be produced by Odderon or Pomeron exchange

 \rightarrow find signatures for interference of C-odd and C-even amplitude

Rainer Schicker, Uni Heidelberg

Interference signal


- Interference effects (relative contribution C=-1)
 - Asymmetries in $\pi^+\pi^-$ and K^+K^- pairs (*C*=±1) in continuum
 - \rightarrow charge asymmetry relative to polar angle of π^+ in dipion rest frame
 - → fractional energy asymmetry in open charm diffractive photoproduction

 \rightarrow asymmetries in HERA kinematics estimated 10 % - 15 %

Gluon saturation

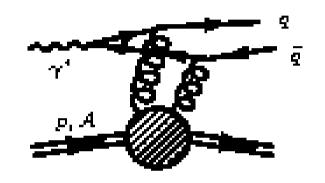
• Fits of parton densities xu_v, xd_v, xg, xS to HERA data

- How does gluon density behave at low x?
- Where does gluon saturation set in ?
- Are there observables which are sensitive to gluon saturation ?

Rainer Schicker, Uni Heidelberg

Heavy quark photoproduction in pp @ LHC

- Photoproduction of QQ
 - photon fluctuates into QQ,
 - Interacts as color dipole


 $\sigma_{dip}(x,r^2) = \sigma_0 \{1 - \exp(-\frac{r^2}{4R_0^2(x)})\}$ Golec-Biernat, Wuesthoff 1999

$$R_0(x) = \frac{1}{GeV} \left(\frac{x}{x_0}\right)^{\lambda/2} \quad \sigma_0, \ \lambda \ from \ fits \ of \ F_2 \ with \ x < 0.01$$

 $\rightarrow \sigma_{dip}$ saturates when r ~ 2R₀

-production cross section in pp-

$$\sigma(pp \to Q\overline{Q}pp) = 2 \int \frac{\partial \partial Q}{\partial \omega} \sigma_{p \to QQ(W_{ph})} d\omega$$

Goncalves, Machado Phys. Rev. D71 (2005)

$Q \overline{Q}$ (LHC)	Collinear pQCD	CGC model
	16 μb	5 µb
$b\overline{b}$	230 nb	110 nb

Rainer Schicker, Uni Heidelberg

Diffractive Photoproduction of heavy quarks

- Advantage of diffractive photoproduction
 - Clear final state defined by two rapidity gaps

Goncalves, Machado Phys. Rev. D75 (2007)

	рр	pPb	PbPb
<i>c c</i>	92 nb	54 µb	59 mb
$b \overline{b}$	0.2	0.09	0.01
	nb	μb	mb

pPb mode: $L = 10^{29} \text{ cm}^{-2}\text{s}^{-1} \rightarrow R (\text{cc}) \sim 5 \text{ Hz}$ Acceptance ~ 10 %, Efficiency ~ 50 % $\rightarrow R(\text{cc}) \sim 20 \text{k per}$ day Heavy quarks can also be produced by central exclusive

diffraction, ie two pomeron fusion \rightarrow harder spectrum of quarks, hence could be disentangled in p_T spectrum

Conclusions, outlook

- ALICE has unique opportunity to do soft diffractive physics @LHC
- Diffractive trigger defined by two rapidity gaps
- Neutral energy measurement at 0⁰
- Phenomenology of Pomeron/Odderon
- Gluon saturation in heavy-quark photoproduction

Photon-Photon physics

Rainer Schicker, Uni Heidelberg