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Taking into account the electromagnetic and gravitational form factors, calculated from a

new set of t-dependent GPDs, a new model including the soft and hard pomerons is built.

In the framework of this model the qualitative description of all existing experimental

data at
√

s ≤ 52.8 GeV, including the Coulomb range and large momentum transfers, is

obtained with only 4 free parameters. Predictions for LHC energies are made.

1 Introduction

The dynamics of strong interactions finds its most complete representation in elastic scattering
at small angles. Only in this region of interactions can we measure the basic properties that
define the hadron structure: the total cross section, the slope of the diffraction peak and the
parameter ρ(s, t). Their values are connected on the one hand with the large-scale structure
of hadrons and on the other hand with the first principles which lead to the theorems on the
behaviour of the scattering amplitudes at asymptotic energies [1, 2].

The definition of the structure of the high-energy elastic hadron-hadron scattering amplitude
at small angles in the new super-high energy range is a fundamental research problem. In this
kinematic domain PQCD cannot be directly operative; however, there are numerous results
derived in the framework of axiomatic field theory that can guide us both at the theoretical
and experimental levels.

The hard pomeron which is obviously present in deeply inelastic processes with the large
ε2 ≈ 0.4 [3] will lead to a strong decrease of the energy at which the saturation or black-disk
regime appears. It is not obvious how the total cross sections will grow with energy, especially
in the energy region of the LHC. In the present work I investigate the impact of the hard
pomeron on some of the features of elastic proton-proton scattering at LHC energies and small
momentum transfer.

The situation is complicated by the possible transition to the saturation regime, as the Black
Disk Limit (BDL) will be reached at the LHC [4, 5]. The effect of saturation will be a change in
the t-dependence of B and ρ, which will begin for

√
s = 2 to 6TeV, and which may drastically

change B(t) and ρ(t) at
√
s = 14TeV [5, 6]. As we are about to see, such a feature can be

obtained in very different models.

There are indeed many different models for the description of hadron elastic scattering at
small angles [7]. They lead to different predictions for the structure of the scattering amplitude
at asymptotic energies, where the diffraction processes can display complicated features [8].
This concerns especially the asymptotic unitarity bound connected with the Black Disk Limit
(BDL) [9].



The total helicity amplitudes can be written as Φi(s, t) = Φh
i (s, t) + Φem

i (s, t)eϕ(s,t) , where
Φh

i (s, t) comes from the strong interactions, Φem
i (s, t) from the electromagnetic interactions and

ϕ(s, t) is the interference phase factor between the electromagnetic and strong interactions [10,
11, 12]. For the hadron part the amplitude with spin-flip is neglected, as usual at high energy.

In practice, many different partial waves with l → ∞ must be summed and this leads to
the impact parameter representation [13] converting the summation over l into an integration
over the impact parameter b. In the impact-parameter representation the Born term of the
scattering amplitude will be

χ(s, b) ∼
∫

d2q ei~b·~q FBorn

(

s, q2
)

, (1)

where t = −q2 and dropping the kinematic factor 1/
√

s(s− 2m2
p) and a factor s in front of the

scattering amplitude. After unitarisation, the scattering amplitude becomes

F (s, t) ∼
∫

ei~b~q Γ(s, b) d2b . (2)

The overlap function Γ(s, b) can be a matrix, corresponding to the scattering of different spin
states. Unitarity of the S-matrix, SS+ ≤ 1, requires that Γ(s, b) ≤ 1. There can be different
unitarisation schemes which map χ(s, b) to different regions of the unitarity circle [14]. In this
work I used the standard eikonal unitarisation scheme which leads to the standard regime of
saturation, i.e. the BDL [15]:

Γ(s, b) = 1 − exp[−iχ(s, b)]. (3)

2 Born Amplitude in the Impact-Parameter

Representation

In different models one can obtain various pictures of the profile function based on different rep-
resentations of the hadron structure. In this model I suppose that the elastic hadron scattering
amplitude can be divided in two pieces. One is proportional to the electromagnetic form factor.
It plays the most important role at small momentum transfer. The other piece is proportional
to the matter distribution in the hadron and is dominant at large momentum transfer.

As in the EPSH model [6], I take into account the contributions of the soft and hard
pomerons. In this approach the nucleon-nucleon elastic scattering amplitude is proportional to
the electromagnetic hadrons form-factors and can be approximated at small t by

T (s, t) = [ k1 (s/s0)
ε1eα′

1
t ln(s/s0) + k2 (s/s0)

ε2eα′

2
t ln(s/s0)] G2

em(t), (4)

where k1 = 4.47 and k2 = 0.005 are the coupling of the “soft” and “hard” pomerons, and
ε1 = 0.00728, α′

1 = 0.3, and ε2 = 0.45, α′

2 = 0.10 are the intercepts and the slopes of the two
pomeron trajectories. The normalization s0 will be dropped below and s contains implicitly
the phase factor exp(−iπ/2). I shall examine only high-energy nucleon-nucleon scattering with√
s ≥ 52.8GeV. So, the contributions of reggeons and odderon will be neglected. This model

only includes crossing-symmetric scattering amplitudes. Hence the differential cross sections of
the proton-proton and proton-antiproton elastic scattering are equal.



The assumption about the hadron form-factors leads to the amplitude

T (s, t)Born. = h1(F
s
Born + F h

Born)G2
em + h2(F

s
Born + F h

Born)G2
grav., (5)

I suppose a non-linear trajectory for the pomeron and, as a first approximation, assume that
the coupling is proportional to the gravitational form factor and that both soft and hard terms
in the FBorn(s, t) have α

′

= 0 at large t.

3 Hadron Form Factors

As was mentioned above, all the form factors are obtained from the GPDs of the nucleon. The
electromagnetic form factors can be represented as first moments of GPDs

F q
1 (t) =

∫ 1

0

dx Hq(x, t); F q
2 (t) =

∫ 1

0

dx Eq(x, t), (6)

following from the sum rules [16, 17].
Recently, there were many different proposals for the t dependence of GPDs. We introduced

a simple form for this t-dependence [18], based on the original Gaussian form corresponding
to that of the wave function of the hadron. It satisfies the conditions of non-factorisation,
introduced by Radyushkin, and the Burkhardt condition on the power of (1 − x)n in the
exponential form of the t-dependence. With this simple form we obtained a good description of
the proton electromagnetic Sachs form factors. Using the isotopic invariance we obtained good
descriptions of the neutron Sachs form factors without changing any parameters.

The Dirac elastic form factor can be written

G2(t) = hfae
d1 t + hfbe

d2 t + hfce
d3 t. (7)

with hfa = 0.55, hfb = 0.25, hfa = 0.20, and d1 = 5.5, d2 = 4.1, d3 = 1.2. The exponential form
of the form factor lets us calculate the hadron scattering amplitude in the impact parameter
representation [6].

I shall use this model of GPDs to obtain the gravitational form factor of the nucleon in the
impact-parameter representation. This form factor can be obtained from the second momentum
of the GPDs. Taking instead of the electromagnetic current Jµ the energy-momentum tensor
Tµν together with a model of quark GPDs, one can obtain the gravitational form factor of
fermions

∫ 1

−1

dx x[H(x,∆2, ξ) ±E(x,∆2, ξ)] = Aq(∆
2) ±Bq(∆

2). (8)

For ξ = 0 one has

∫ 1

0

dx x[H(x, t) ± E(x, t)] = Aq(t) ±Bq(t). (9)

Calculations in the momentum-transfer representation show that the second moment of the
GPDs, corresponding to the gravitational form-factor, can be represented in the dipole form

A(t) = L2/(1− t/L2)2. (10)



Figure 1: dσ/dt at
√
s = 52.8GeV for pp elastic scattering, at small |t| (left) and at large |t|

(right).

with the parameter L2 = 1.8GeV2. For the scattering amplitude, this leads to

A(s, b) =
L5b3

48
K3(Lb), (11)

where K3(Lb) is the MacDonald function of the third order. To match both parts of the
scattering amplitude, the second part is multiplied by a smooth correction function which
depends on the impact parameter

ψ(b) = (1 +
√

r21 + b2/
√

r22 + b2). (12)

4 Description of the Differential Cross Sections

The model has only four free parameters, which are obtained from a fit to the experimental
data:

h1 = 1.09± 0.004; h2 = 1.57± 0.006; r21 = 1.57± 0.02; r2 = 5.56± 0.06.

I used all the existing experimental data at
√
s ≥ 52.8GeV, including the whole Coulomb

region and up to the largest momentum transfers experimentally accessible. In the fitting
procedure, only statistical errors were taken into account. The systematic errors were used as
an additional common normalisation of the experimental data from a given experiment. As a
result, one obtains

∑

χ2
i /N ' 3. where N = 924 is the number of experimental points. Of

course, if one sums the systematic and statistical errors, the χ2/N decreases, to 2. Note that
the parameters are energy-independent. The energy dependence of the scattering amplitude is
determined only by the intercepts of the soft and hard pomerons.

In Fig. 1 the differential cross sections for proton-proton elastic scattering at
√
s = 52.8GeV

are presented. At this energy there are experimental data at small (beginning at −t =
0.0004GeV2) and large (up to −t = 10GeV2) momentum transfers. The model reproduces
both regions and provides a qualitative description of the dip region at −t ≈ 1.4GeV2, for



Figure 2: dσ/dt for p̄p elastic scattering at small |t|, at
√
s = 541GeV (left) and

√
s = 1800GeV

(right)

√
s = 53GeV and for

√
s = 62.1GeV, although only the low-t and high-t regions have been

fitted to.
Now let us examine the proton-antiproton differential cross sections. In this case at low

momentum transfer the Coulomb-hadron interference term plays an important role and has
the opposite sign. The model describes the experimental data well. In this case, the first part
of the scattering amplitude determines the differential cross sections, and is dominated by the
exchange of the soft pomeron.

There was a significant difference between the experimental measurement of ρ, the ratio
of the real part to the imaginary part of the scattering amplitude, between the UA4 and
UA4/2 collaborations at

√
s = 541GeV. As shown in Table 4, the resulting values for ρ(0)

appear inconsistent. A more careful analysis [19, 20] shows that there is no contradiction
between the measurements of UA4 and UA4/2. Now the present model gives for this energy
ρ(
√
s = 541 GeV, t = 0) = 0.163, so, practically the same as in the previous phenomenological

analysis.

ρ̄ (
√
s = 541 GeV, t = 0)

experiment experimental analysis global analysis This model
UA4 0.24± 0.02 0.19± 0.03 [[19]]
UA4/2 0.135± 0.015 0.17± 0.02 [[20]] 0.163

Table 1: Average values of ρ, derived with fixed total cross section (first two columns), and
from a global analysis (last two columns).

Now let us examine the data at higher energy, where the contribution of the hard pomeron
will be more important. In Fig. 2 the description of the proton-antiproton scattering at

√
s =

541GeV and at
√
s = 1800GeV is shown. In this case the Coulomb-hadron interference term

leads to a large value of the real part of the scattering amplitude, which is determined by the
contribution from the hard pomeron. The good description of the experimental data shows



Figure 3: dσ/dt for p̄p elastic scattering at large momentum transfer, at
√
s = 630GeV (left)

and
√
s = 1800GeV (right)

that the parameters of the hard pomeron correspond to the real physical situation.

Fig. 3 shows the description of the experimental data at larger momentum transfers for√
s = 630GeV and

√
s = 1800GeV. It is clear that the model leads to a good description of

these data. However, one must note that the fine structure of the dip is not reproduced by the
model in this case. The model shows only an essential change of the slope in this region.

Saturation of the profile function will surely control the behaviour of σtot at higher energies
and will result in a significant decrease of the LHC cross section. For the last LHC energy√
s = 14TeV the model predicts σtot = 146mb and ρ(0) = 0.235. This result comes from the

contribution of the hard pomeron and from the strong saturation from the black disk limit.

5 Conclusion

In the presence of a hard Pomeron [21], saturation effects can change the behaviour of the
cross sections already at LHC energies. A new model, taking into account the contributions
of the soft and hard pomerons and using form factors calculated from the GPDs, successfully
describes all the existing experimental data on elastic proton-proton and proton-antiproton
scattering at

√
s ≥ 52.8GeV, including the Coulomb-hadron interference region, the dip region,

and the large-momentum-transfer region. The behaviour of the differential cross section at
small t is determined by the electromagnetic form factors, and at large t by the matter distri-
bution (calculated in the model from the second momentum of the GPDs) as was supposed by
H.L. Miettinen a long time ago.

The model leads to saturation of the BDL in the TeV region of energy. As a result the
parameters of the scattering amplitude B(s, t) and of ρ(s, t) have a complicated dependence
on s and t and the scattering amplitude has a non-exponential behaviour at small momentum
transfer.

The possibility of a new behaviour of ρ(s, t) and B(s, t) at LHC energies [6] has to be taken
into account in the procedure extracting the value of the total cross sections by the standard
method [22].



Acknowledgements

I would like to thank for helpful discussions J.R. Cudell and O.V. Teryaev. I gratefully ac-
knowledge the organisation committee and R. Orava for the financial support to take part in
the conference and would like to thank the FRNS and University of Liège where part of this
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