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Arguments based on the Renormalization Group invariance indicate the vanishing of

hadron scattering amplitudes at infinite energies in massless confined QCD with mass

gap in physical spectrum. It is shown also that if at least one quark is massive the RG

arguments do not forbid increasing amplitudes.

As it is known for a long time the masslessness of fundamental–quark and gluon-fields in the
non-Abelian gauge theory in no way precludes existence of physical excitations separated from
the vacuum by a non-zero mass gap. This feature, called dimensional transmutation, goes back
to the pioneering paper [1] and since then was being repeatedly discussed in various contexts
(from relatively recent papers see, e.g. [2]). Moreover it is considered that QCD with three
massless quarks reflects quite well the basic properties of hadron physics in the low-energy light

sector. For instance, the nucleon mass practically does not change in the limit of massless
quarks [3]. One can therefore believe that such a theory differs even less from the genuine QCD

at very high energies when the role of mass is, to the great extent, negligible. For instance, the
famous BFKL results [4] that give estimates for infinitely growing total cross-sections (due to
the Pomeron intercept exceeding 1) were obtained in massless QCD.

1 Renormalization Group Argument

We are going to verify the possibility of infinitely growing cross- sections assuming existence of
confined massless QCD [5] , i.e. of a still hypothetical but seemingly quite plausible theory with
the physical state spectrum consisting of massive (due to dimensional transmutation) colourless
hadrons and without quark and gluon asymptotic states. It means that the scattering amplitude
as an analytic function does not possess any kind of zero-mass singularities related to elemen-
tary quark-gluon fields and has only singularities related to massive colourless hadrons. The
only fundamental mass parameter ΛQCD is hidden in the running coupling αs(µ

2). Now, the
physical hadron masses Mi are related with the coupling constant by the formula that reflects
the renormalization invariance (everywhere below this also includes the scheme invariance) of
physical quantities

M2

i = ciµ
2 exp(−K(αs)),

dK(αs)/dαs = 1/β(αs),

where ci are fixed numerical parameters, β(αs) is the Gell-Mann-Low function and µ stands for
renormalization scale. Actually it means that (see, e.g., [6])

M2

i = ciΛ
2

QCD. (1)



For definiteness, let us consider the scattering amplitude of two hadrons, T . This amplitude
is a function of two independent Mandelstam variables, s and t, and also of a (generally infinite)
set of hadron masses, marked by parameters ci from Eq. (1):

T = T (s, t; µ2, αs; {ci}).

Presence of quantities µ2 and αs amongst the arguments of T reflects the provenance of the
amplitude from the fundamental Lagrangian and freedom of the choice of the normalization
scale. In the same way as physical masses, the amplitude of a physical process must be renor-
malization invariant. The dependence on αs is related to calculations based on the fundamental
QCD Lagrangian while the very amplitude is, actually, a function of s/Λ2

QCD, t/s and {ci}, i.e

the amplitude depends only on Mandelstam variables and physical hadron masses which define
singularities of the amplitude in s- and t- planes. Nonetheless the genetic relation with the
underlying theory leads to a non-trivial conclusion. Let us take for simplicity the case of for-
ward scattering (t = 0). Due to our assumptions the amplitude is analytic (or at least finite) in
this point. Our main argument is that the renormalization invariance, though does not define,
but quite strongly restricts the functional dependence of the dimensionless amplitude on its
dimensionful parameters. It is easy to verify that, in our case, the renormalization invariance
implies the following general form of the amplitude:

T (s, 0; µ2, αs; {ci}) = Φ((s/µ2) exp(K(αs)); {ci}),

where the concrete form of Φ(Z; {ci}) is to be fixed by the dynamics.
We do not know it but we do know that, at any rate, if the coupling αs goes to zero the

amplitude goes there as well. As

K(αs) ∼ 1/β0αs + O(log(1/αs)) at αs → 0,

it is equivalent to the statement that

Φ(Z; {ci}) → 0 at Z → ∞.

Recalling that Z = (s/µ2) exp(K(αs)), we see that the limit Z → ∞ can be realised with s → ∞
at µ and αs fixed as well. In its turn it means that, in our theory, the forward scattering

amplitude vanishes with infinite energy growth:

T (s, 0) → 0 at s → ∞.

For example, the total cross-sections asymptotically decrease to zero:

σtot → 0 at s → ∞.

Moreover,
σtot < const/s at s → ∞.

Partial cross-sections have to drop even faster than the total one to compensate the growth
of the number of open channels. It is not difficult to be convinced that the same conclusion
takes place for the case of scattering at fixed non-zero angle (t/s fixed). As to fixed t we
can rely on the results by Cornille and Martin [7] according to which if the even-signature
amplitude dominates forward scattering then |T (s, t)| ≤ |T (s, 0)|, so in this case the amplitude
asymptotically tends to zero at high energies and fixed momentum transfers as well. We have
to note that the conclusion depends critically on the asymptotic freedom. If the number of
fermion flavors were larger than 16 then our arguments would lead to quite an innocuous result
that the amplitude vanishes at s = 0.



2 Discussion

From a purely theoretical viewpoint general principles of quantum field theory do not forbid
such a phenomenon. For instance, if to assume the absence of oscillations, one can obtain the
following high-energy lower bound [8]:

|T (s, 0)| > const/(log s)1/2.

The result obtained above could mean the presence of oscillations in energy.
More liberal lower bound is [8]:

σtot > const/s6(log s)2.

As to the fixed angle scattering the result seems to be fully consistent with the famous quark

counting rule [9].
From the point of view of existing experimental data on total and differential small-angle

cross-sections the result obtained here seems to be absolutely incredible: the total cross-sections
grow at energies up to tens TeV, if to add the cosmic rays data. Differential cross sections of,
say, pp-scattering at t = 0 which are proportional to |T (s, 0)|2/s2 also grow. Certainly, the
result deals with infinite energies but even so, the present-day data if to believe in the result
we discuss - would mean that there exists some gigantic energy scale (no less than several tens
TeV) from which the decreasing starts. However, the theory in question has, as was said, one
fundamental scale ΛQCD that, in any case, does not surpass several hundreds MeV. It is very
difficult to imagine, in the framework of this theory, a mechanism of generation of such a huge
scale. This could be considered as an indication of invalidity of the theory for, at least, high-
energy diffractive scattering. At the same time it does not contradict to the well known - both
theoretically and experimentally - decrease of hadronic amplitudes at fixed angles.

3 Massive Case

If the fundamental QCD Lagrangian contains fermion mass terms then instead of one single
RG invariant mass scale

Λ2

1
= µ2 exp(−K(αs))

we have another one (for one massive flavour):

Λ2

2
= m2 exp(L(αs))

where

dL(αs)/dαs = γm(αs)/β(αs)

and γm(αs) = −d(ln m2)/d ln µ2 is the mass anomalous dimension defined as in [6]. Here,
taking into account the general scheme invariance of physical quantities, we use for simplicity
the minimal renormalization scheme. Now the argument used above does not pass through. In
fact, the amplitude now has the following general form

T (s, 0) = F (s/Λ2

1
, Λ2

2
/Λ2

1
).



At infinite energy T → F (∞, Λ2

2
/Λ2

1
), while at αs → 0, T > F (∞,∞) = 0 because Λ2

2
∼ ( 1

αs
)

γm
β0

at αs → 0. So the (massive) free-field limit is generally different from the high-energy limit and
we cannot come to any definite conclusion concerning the latter.

The general conclusion of this paper is that massless QCD is not a good underlying approx-
imation for high-energy diffractive scattering while it seems to be admissible for hard processes
or for the low- energy sector of light hadrons.

The crucial importance of quark non-zero-masses for the rise of the total cross-sections seems
a bit counterintuitive.
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Pronko, Roman Ryutin, Sergey Troshin and Tai Wu for useful discussions.

References

[1] S. Coleman and E. Weinberg., Phys. Rev. D7 1888 (1973).

[2] L.D. Faddeev, Theoretical and Mathematical Physics. 148 986 (2006).

[3] B.L. Ioffe, Physics-Uspekhi. 49 1077 (2006).

[4] L.N. Lipatov, Phys. Atom. Nucl. 67 83 (2004); Yad. Fiz. 67 84 (2004).

[5] For the first time this issue was addressed in my e-print arXiv: hep-ph/0603103v1 (2006).

[6] J. Collins, Renormalization, Cambridge University Press (1984). For a scheme independent definition of
ΛQCD, see H. Sonoda, UCLA/94/TEP/41 (1994); arXiv: hep-th/941024v2 (1994). The most detailed

outline of the renormalization group can be found in the book by N.N. Bogoliubov and D.V. Shirkov,
Introduction to the Theory of Quantized Fields, New York: Wiley-Interscience (1959,1980).

[7] H. Cornille, A. Martin, Nucl. Phys. B49 413 (1972).

[8] Y.S. Jin and A. Martin, Phys. Rev.135 B1369 (1964); see also other bounds in the review R.J. Eden, Rev.
Mod. Phys. 43 15 (1971).

[9] V.A. Matveev, R.M. Muradian, A.N. Tavkhelidze, Lett. Nuovo Cim. 7 719 (1973); S.J. Brodsky, G.R. Far-
rar, Phys. Rev. Lett. 31 1153 (1973).


