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It is shown that starting from the pomeron contribution with intercept αP (0) > 1 one
can obtain in a quasi-eikonal approach inclusive cross section which is similar to contribu-
tion of triple pole (at t = 0) pomeron. Generalizing this analogy we consider tripole and
dipole pomeron contributions to inclusive cross section. They lead to 〈n〉 ∝ ln3

s (tripole)
or 〈n〉 ∝ ln2

s (dipole) and describe well the data on charged hadron distributions in p̄p.
Predictions of one particle pt and rapidity distributions for LHC energies are given.

The model of simple pole pomeron with intercept αP (0) = 1 + ε, ε > 0 [1] gives a simple
and compact parametrization for many high-energy soft processes (elastic and deep inelastic
scattering, diffraction and others), it describes well many experimental data at high energies.

On the other side at s → ∞ contribution of such pomeron violates unitarity explicitly.
The model leads to total cross section of hadron interaction σt(s) ∝ (s/s0)

ε (s0 = 1 GeV2) in
contradiction to the Froissart bound σt ≤ (π/m2

π) ln2(s/s0).

Thus the model is only a phenomeno-
logical tool and must be improved in
order to restore unitarity. There are
a few known ways to avoid at least a
rough violation of unitarity bound. The
most simple method for that is to sum
multipomeron diagrams of Fig. 1.
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Figure 1: Multipomeron contributions to elastic
scattering amplitude.

Starting with one pomeron exchange written in the form

a(s, t) = ηP (t)g̃ab(t)
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where s0 = 1GeV2 and ηP (t) = 1+exp(−iπαP (t))
− sin(παP (t)) , then going to impact parameter representation
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one can obtain under some simplifying assumption (see below)

H(s, b) = − 1

2i

∞
∑

n=1

Ga(n)Gb(n)

n!
[−2ih(s, b)]n.

The amplitude H(s, b) takes this
form if we assume that two-
hadrons-n-pomeron amplitude is
proportional to the product of
two-hadron-pomeron vertices (a
pole approximation for interme-
diate states) as shown in Fig. 2.
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Figure 2: Amplitude of interaction of two
hadrons with n pomerons in a pole approxima-
tion but with phenomenological factor Ga(n).

Moreover, assuming either G(n) = Cn or G(n) = Cn
√

n! we obtain two well known schemes
of pomeron unitarization: quasi-eikonal [2] or quasi-U -matrix models [3, 4].
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If αP (t) = 1 + ε + α
′

P t and ga,b(t) = exp(Ba,b t) one can find that at s → ∞ in both models

σab
t (s) ≈ 8πεR2(s) ln(s/s0) ≈ 8πεα

′

P ln2(s/s0),

where R2(s) = Ba + Bb + α
′

P ln(s/s0).

This result gives a ground for another method of constructing amplitude. One can consider
just from the beginning more complicated singularities of partial amplitudes than usual simple
angular momentum poles. Because the factorization of residues is valid not only for simple j-
poles but also for any isolated j-singularity [5] one can consider, for instance, double pole (dipole
pomeron) [6] or triple pole (at t 6= 0 because of analyticity it must be a pair of hard branch
points collided to a triple pole at t = 0) instead of simple pole. In these models σt(s) ∝ ln(s/s0)
(dipole) or σt(s) ∝ ln2(s/s0) (tripole) at s → ∞. Both models lead to a very good description of
the hadron total cross sections as well as of the differential elastic cross sections, deep inelastic
scattering and vector meson photoproduction.

Therefore it is interesting to see how many-particle processes are described in these unita-
rized pomeron models. We consider here one particle distribution in rapidity and pseudorapid-
ity.

1 Multipomeron Exchanges in the Model with αP(0) > 1

Due to the generalized Optical Theorem the differential cross section of one particle inclusive
production (a + b → c + X) in the central kinematic region where
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Figure 3: Pomeron contri-
bution to inclusive produc-
tion in the central region.
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is related with the diagram of Fig. 3.
More exactly, at large energy and for the simple pomeron

pole with αP (0) − 1 = ε

E
d3σ

d3p
= E

d3σ

dpld2pt

= 8π DiscM2M(a + b + c̄ → a + b + c̄)

= ga(0)

( |t|
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)ε
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2
t )

( |u|
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)ε

gb(0).

where E, pl, ~pt are energy and momenta of the inclusive hadron c, ga,b(t0 = 0) are the coupling
vertices aPa, bPa, s0 = 1GeV2.

It is more convenient for what follows to use another set of variables, (pt, y) or (pt, η)

y =
1

2
ln

E + pl

E − pl

, |y| ≤ y0 = 1/2 ln(s/m2
t ), η = − ln(tan ϑ/2),

where ϑ is the scattering angle of hadron c in the centre-of-mass system. With the rapidity
variable the cross section in the one pole approximation is read as

E
d3σ

d3p
= ga(0)eε(y0−y)vc(p

2
t )e

ε(y0+y)gb(0) = ga(0)vc(p
2
t )gb(0)e2εy0 . (1)

Figure 4: Multipomeron exchange diagrams
for one particle inclusive production, (a) - di-
agrams calculated in [8], (b) - diagrams calcu-
lated in [10, 11].

Figure 5: The dominating contribution to cen-
tral inclusive production at s → ∞.

In Ref. [8] the contribution to inclusive cross section of the diagrams given in Fig. 4a can be
calculated. It was shown that due to Abramovsky-Gribov-Kancheli rules [9] only input diagram
with one pomeron exchange contributes, rest sum of diagrams vanishes. Thus the cross section
again is given by Eq. (1).

Making use of the sum rule

∫

d3p

E
E

d3σ(ab → cX)

d3p
= 〈nc〉σab

t (s) (2)



one can calculate the mean multiplicity of hadrons as well as taking into account that σt ≈
σ0 ln2(s/s0) to find at s → ∞

dnc

dy
=

1

σt(s)
8πga(0) Ṽcgb(0) (s/s0)

ε ∝ (s/s0)
ε

ln2(s/s0)
,

where Ṽc is the integral of vc(p
2
t ) over p2

t . Thus, integrating over y we obtain a power growth
for mean multiplicity, 〈nc〉 ∝ (s/s0)

ε/ ln(s/s0). Let us notice that dnc/dy does not depend on
y, however it is not supported by the experimental data.

More diagrams must be added to calculate the inclusive cross section under interest. These
diagrams are shown in Fig. 4b and were calculated in [10, 11]. Likewise the case of diagrams
Fig. 4a the sum of all contributions with the reggeons between hadrons a and b vanishes.

As result at s → ∞ the inclusive cross section in the central region is dominated by the
contribution of the diagram in Fig. 5 and can be written in a general form as

E
d3σ

d3p
= ga(0)F(y0 − y)vc(p

2
t )F(y0 + y)gb(0), where F(y0 ± y) = (y0 ± y)2.

It is necessary to note that this result exactly coincides with those which can be obtained if we
assume from the beginning that pomeron at t = 0 is a triple j-pole.

This fact and similar ones valid for the elastic amplitude allow us to make more general
assumptions and consider the diagram of Fig. 3 with pomerons of arbitrary hardness at t = 0.

If the pomeron contribution to the partial amplitude (of elastic scattering) at t = 0 is
proportional to 1/(j − 1)ν+1 then

F(y0 ± y) = (y0 ± y)ν and
dn

dy
∝ (y0 − y)ν(y0 + y)ν .

We would like to remark that such a behaviour of dn/dy (at ν > 0) is in a qualitative agreement
with high energy experimental data, which show a rise dn/dy at y0 and a parabolic form. Taking
into account that such pomeron leads to σt(s) ∝ lnν(s/s0) one can find

dn

dy
(y = 0) ∝ lnν(s/s0) and 〈n〉 ∝ ln1+ν(s/s0).

It is known that excellent description of mean hadron multiplicity is achieved within a logarith-
mic energy dependence with ν = 2 or ν = 3. All mentioned properties of unitarized pomeron
models concerning one particle inclusive distribution are rather attractive, but they should be
checked out quantitatively with the data. We do that in the next section.

2 Comparison of the Unitarized Pomeron Models with

the Data

Experimental data. Our aim is not the detailed description of all data, we would like to
demonstrate only a possibility of the considered models to reproduce the main features of
the high energy data. Evidently, at lower energy we need to add more Regge contributions
increasing the number of the fitting parameters. To avoid extra number of contributions and



parameters we consider the data on E d3σ/d3p at
√

s = 200, 540, 630, 900, 1800 GeV (240
points) and on dn/dη normalized to σin (48 points) [12].

Even for the high energies chosen there is a nontrivial dependence of cross sections on pt

(Fig. 6), their slope is changing with energy. The dependence on pt in the pomeron contribution
is coming only from the vertex function vc(p

2
n), therefore one has to conclude that the slope

effect can be explained in the model only due to sub-asymptotic contributions. Besides this,
an exponential increasing E d3σ/d3p at small transverse momenta pt < 1 GeV is changed for a
power-like behaviour at higher pt (larger than 1 GeV).

Another set of data, namely, dn/dη is more interesting for our aim. It can be obtained from
Ed3σ/d3p by integration over pt and with a replacing y for η. To perform the integration one
has to know the vertex functions vc(p

2
t ) which are not determined within any Regge model, we

parameterize it in a some form to reproduce existing experimental data. The explicit form of
pt-dependence is not crucial for models under interest. It plays only subsidiary role in obtaining
dσ/dη or dn/dη. The dependence of the differential cross section on y is more important for a
verification of our models.
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Figure 6: pt-dependence of inclusive
cross sections at high energies.
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Figure 7: Density of the produced
hadrons.

Pomeron models. At
√

s ≤ 200GeV in the dipole pomeron model we take into account in
the diagram in Fig. 3 the dipole (d) and simple (p) poles, both with α(0) = 1, and f -reggeon
for the upper and lower parts of the diagram. In the simple pole model instead of the dipole
we have considered simple pole with α(0) = 1+ ε. In the tripole pomeron case a triple pole has
to be added. However, to avoid too many parameters we consider here a simplified model for



tripole pomeron. The general form of the cross section for all considered models is the following:

E
d3σ

d3p
= g11v11(pt)zuzd + g12v12(pt)(zu + zd) + g22v22(pt)+

g13v13(pt)[zueεf (y0+y) + zde
εf (y0−y)]+

g23v23(pt)[e
εf (y0−y) + eεf (y0+y)] + g33v33(pt)e

2εf y0

where gab with a, b = 1, 2, 3 are constants, εf = αf (0) − 1, vab(pt) are vertex functions

vab(pt) = (1 + p2
t /p2

0)
−µab [e−Bpt + c(1 + p2

t /p2
1)

−µ].

For the dipole pomeron model

zu = (y0 − y), zd = (y0 + y),

for the tripole pomeron model

zu = β(y0 − y)2 + (y0 − y), zd = β(y0 + y)2 + (y0 + y),

and for the simple pomeron model

zu = eε(y0−y), zd = eε(y0+y).

The data fit. The description of the data is demonstrated in Figs. 6 and 7. Data are taken
from [12]. The red solid line – dipole pomeron model, blue long dashed line – tripole pomeron
model, green doted line – simple pomeron pole with α(0) > 1. Predictions for three LHC
energies are also shown. In Fig. 7 the solid symbols correspond to the data normalized to
σin, open symbols correspond to data normalized to σNSD (not used in the fit procedure).
Parameters of the models as well as χ2 will be given in a more complete paper [13].

One can see that the theoretical curves in the three models are very close to each other,
at least for energies where data exist. The fit gives χ2/n.d.f. = 3.01 (dipole), 2.98 (tripole)
and 2.96 (simple pole). It is not a surprise because the parameters of the tripole and simple
models in fact mimic at not very high energy the dipole pomeron model. In the tripole model
parameter β is equal to 0.03, thus the terms containing (y − y0)

2 are not important at the
achieved energy,

√
s ≤ 1800GeV. A similar situation occurs in the simple pomeron model

where a strong cancellation among the S- and P -terms occurs.

gss(s/s0)
ε + gpp ≈ gss + gpp + gssε ln(s/s0)

However, a difference between the models’ predictions is increasing with energy. It can be seen
clearly in Figs. 8 and 9 which demonstrate the behaviour of dn(η = 0)/dη, 〈n〉 in energy.

3 Conclusion

We have shown that the high energy experimental data on one-particle inclusive distribution
can be described well in the models of unitarized pomeron, which do not violate unitarity
restrictions. They predict a small difference for differential cross sections, and mean multiplic-
ities at LHC energies, giving dn/dη(y = 0) ∝ ln4 s(ln3 s) and 〈n〉 ∝ ln3 s(ln2 s) for the dipole
(tripole) pomeron model, correspondingly.



100 1000 10000
s  (GeV)

2.0

3.0

4.0

5.0

dn
/d

   
 ( 

 =
0)

η
η

dipole
tripole
simple

Figure 8: Density of the produced hadrons
at η = 0 as function of energy.

100 1000 10000
s (GeV)

10

20

30

40

<n
>

dipole

tripole
simple

Figure 9: Mean multiplicity of the pro-
duced hadrons as function of energy, cal-
culated in the interval −3.5 ≤ η ≤ 3.5.
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