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The physics programme and the detector apparatus of the TOTEM experiment is pre-

sented. Then, the key optics and their goals are summarised. The method to measure

the total pp cross section is introduced. One of its essential parts, the extrapolation to

t = 0, is discussed in detail and extrapolation strategies for β∗ = 1535 and 90 m optics

are presented. In particular, an adequate parameterisation and a treatment of Coulomb

scattering is proposed. In the last section, a Roman Pot alignment procedure is described.

1 Introduction

The TOTEM experiment [1, 2] is dedicated to forward hadronic phenomena. The tree pillars of
its physics programme are: an accurate measurement of the total pp cross section, a measure-
ment of elastic scattering in a wide kinematic range and studies of diffractive processes. This
paper is focused on the first two, for the latter one we refer to [1, 2, 3].

The programme is touching one of the least explored and understood areas of hadronic
physics. This fact can be well demonstrated by Fig. 1. The left plot shows several model
predictions for elastic differential cross sections which differ by several orders of magnitude
at large |t| (four-momentum transfer squared). The right figure compiles data on the total pp
cross section. Due to large uncertainties of cosmic ray experiments and conflicting Tevatron data
[4, 5], this data set can hardly favour any of the proposed theoretical descriptions over another.
TOTEM shall shed some light onto those open questions by providing precise measurements –
see for instance the anticipated error bar for total cross section in Fig. 1.

The challenging programme brings special requirements for the detector apparatus. In
particular, large pseudorapidity coverage – to detect most fragments from inelastic collisions
and excellent acceptance for outgoing diffractive and elastic protons. To accomplish this task,
TOTEM comprises three subdetectors: the inelastic telescopes T1 and T2 and a system of
Roman Pots (RP) for proton detection. For details on instrumentation see [1, 2, 6]. This
design results in a unique apparatus with an excellent pseudorapidity coverage, see Fig. 2. The
acceptance of the RPs can be further varied by using different optics, as will be discussed in
the next section.

2 Measurement of the Total Cross Section

The forward protons will be detected by the system of Roman Pots. Their position and accep-
tance depends on the settings of the accelerator (beam optics) – for details see chapter 6 in [2].
TOTEM plans to exploit the following 3 types of optics.
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Figure 1: Left: predictions of the elastic differential cross-section at a centre-of-mass energy
of 14 TeV by several phenomenological models. Acceptance bands for the main optics (see
Sec. 2) are shown at the bottom. Right: a compilation of available data for the total pp cross
section with a fit by the COMPETE collaboration [7]. The anticipated ultimate precision (1%)
is shown in the bottom right corner.

1. β∗ = 1535 m. This is the ultimate optics for low |t| elastic scattering and precise (1%
error) total cross section measurement.

2. β∗ = 90 m is a universal optics allowing for measurement of elastic scattering (medium
|t| range), total cross section (5% uncertainty) and also for diffraction studies.

3. β∗ = 0.5 ÷ 3 m (standard optics) are suited for high |t| elastic scattering and various
diffractive measurements.

See Figs. 1 and 2 for a comparison of elastic scattering acceptances for the above optics.
TOTEM intends to measure the total cross section by the luminosity independent method.

It is based on the Optical Theorem:

σtot(s) ∝ =T H(s, t = 0) , (1)

relating the total cross section σtot to the hadronic1 component of the elastic scattering ampli-
tude T H(s, t). When it is complemented by common definitions for luminosity L and rates N

% =
<T H

=T H

∣

∣

∣

∣

t=0

,
dσ

dt
∝ |T H |2, dN = Ldσ, Ntot = Nel + Ninel, (2)

one can obtain relations for the total cross section and luminosity:

σtot =
1

1 + %2

dN/dt|t=0

Nel + Ninel
, L = (1 + %2)

(Nel + Ninel)
2

dN/dt|t=0
. (3)

1There is obviously a second component due to the Coulomb scattering. Their interference is briefly discussed
in Sec. 2.
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Figure 2: The acceptance of the TOTEM apparatus. Left: The coverage of the three subsystems
of TOTEM. The shown acceptance of RPs refers to the β∗ = 1535 m optics. For the other
optics, the acceptance is shifted to lower pseudorapidity values, which narrows the gap between
RPs and T2. Right: RP acceptances for elastic events for different optics at

√
s = 14 TeV.

Here, dN/dt|t=0 stands for elastic rate in the Optical Point (i.e. t = 0), which is to be obtained
by an extrapolation procedure discussed in Sec. 2. Nel is the total elastic rate, it will be
measured by RPs and will be adjusted, again, by the extrapolation procedure. Ninel represents
the total inelastic rate measured by the telescopes T1 and T2 (more details in Sec. 2.2 in [8]).

The % quantity can only be determined by an analysis of the Coulomb-hadronic interference
(see below in Sec. 2) and there is only a small |t| window, where these effects are significant
enough. Moreover, for the energy of 14 TeV this region is found around t = 1 ·10−3 GeV2 which
is on the very edge of TOTEM’s acceptance. Therefore TOTEM might not be able to determine
the ρ value at the nominal LHC energy, unless allowed to insert the RPs closer than the standard
10 beam-σ distance (which would push the acceptance to lower |t|). For reduced energies, the
prospects are much brighter as the interference region shifts towards higher |t| values. Even if
TOTEM was unable to resolve ρ, its value could be taken from external predictions (e.g. [7]).
Note that expected ρ values are small ≈ 0.14 and since ρ enters the formulae Eq. (3) only via
1 + %2, the influence of any uncertainty is small [2, 8].

Extrapolation to t = 0

The value dσ/dt|0 is, indeed, not accessible experimentally and thus an extrapolation from
a higher |t| region must be applied. A necessary condition for any successful extrapolation
is a suitable parameterisation. Looking at Fig. 3, showing several model predictions in a
low |t| region, one can observe almost exponential decrease of the elastic cross section up to
|t| ≤ 0.25 GeV2. This is further supported by almost constant differential slope B(s, t) in the
quoted range2. The plot (c) hints that the phase of hadronic amplitudes can be described by
a polynomial of a low degree. These arguments suggest that the following parameterisation is

2 The model of Islam et al. is an exception which would be easily recognised (e.g. in large |t| elastic scattering)
and a different strategy would be applied.
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Figure 3: Model predictions for
√

s = 14 TeV in a low |t| region. (a): predictions for the
elastic differential cross section. (b): predictions for the elastic slope B(s, t) = d

dt log dσ
dt . (c):

predictions for the hadronic phase.

adequate:

T H(s, t) = eM(t)eiP (t),
dσ

dt
= |T C+H(s, t)|2, with M, P polynomials for a fixed s . (4)

T C+H stands for the scattering amplitude of the combined Coulomb and hadronic forces and
will be discussed below. The questions to be answered are: what is the optimal fit range and
what is the optimal degree of the polynomials. It is obvious that if too many free parameters are
introduced, they cannot be resolved with confidence. This is mainly a problem for the phase
polynomial P (t) since any phase information can only be resolved from a narrow Coulomb
interference window, as discussed above. The optimal values shall give good results for most of
the models considered; in this way the procedure can be regarded as model-independent.

So far, only the hadronic contribution T H to the elastic scattering has been discussed. It is
clear that Coulomb interaction will play a role and therefore must be taken into account. At the
time being, there are two approaches to calculate scattering amplitudes T C+H for the combined
interaction: the traditional (à la West-Yennie [9]) and the eikonal (see e.g. Kundrát-Lokaj́ıček
[10]). The traditional approach is based on rather constraining assumptions on the form of the
hadronic amplitude, and furthermore it has recently been shown internally inconsistent [11].

As mentioned in Sec. 2, TOTEM plans to measure the total cross section with two optics:
β∗ = 1535 m and 90 m. The lowest measurable |t| values differ quite considerably (see Fig. 2
right and vertical marks in Fig. 3) and therefore the extrapolation strategies differ as well.

For the 1535 m optics, the Coulomb interference effects play a role and thus an interfer-
ence formula must be exploited (the eikonal one has been used in this study). The following
configuration has been found optimal: quadratic B(t) and constant phase with upper bound
|t| = 4 · 10−2 GeV2. Preliminary results are shown in Fig. 4 (a). One can see that most models
lie within a band ±0.2% (except for the model of Islam et al. – see footnote 2).

As for what concerns the 90 m optics, the Coulomb effects are negligible and therefore the
phase parameterisation becomes irrelevant3. On the other hand, the horizontal t component tx

3The T
C+H coincides with T

H and the phase factor exp (iP (t)) cancels out when differential cross section
is calculated according to the Eq. (4).



can be resolved with a limited resolution only – see Fig. 4 (b). Since t = tx+ty, the considerable
uncertainties propagate to the full t distribution. A number of solutions might be suggested.

1. Use the t-distribution (i.e. dσ/dt) despite large uncertainties.

2. Using azimuthal symmetry, one can “transform” a ty-distribution in a t-distribution:

dσ

dty
=

dσ

dtx
⇒ dσ

dt
(t) ∝

0
∫

t

du
dσ

dty
(u)

dσ

dty
(t − u) .

However, since low |ty| information is missing (out of acceptance), an extrapolation step
would be needed just for this transformation.

3. “Transform” a t-parameterisation in a ty-parameterisation and fit it directly through ty

data:

ty = t sin2 ϕ, with ϕ uniformly distributed ⇒ dσ

dty
(ty) =

2

π

π/2
∫

0

dϕ

sin2 ϕ

dσ

dt

(

ty

sin2 ϕ

)

Considering a parameterisation of type Eq. (4), one can derive an approximate formula:

dσ

dt
= ea + bt + ct2 + ... ⇒ dσ

dty
(ty) ≈ 1√

π

ea + bty + ct2
y

+ ...

√

|b ty|

which can be justified provided the non-linear terms in the exponent (ct2, . . .) do not give
an essential contribution – which is the case, see Fig. 3.

Eventually, the third approach has been chosen and a cubic polynomial with an upper bound
of |t| = 0.25 GeV2 has been found optimal. Preliminary results are plotted in Fig. 4 (c). Most
models fall in a band between −1% and −3% (Islam’s model being again an exception – see
footnote 2). The overall offset of −2% is a consequence of the beam divergence and can be
corrected in the data analysis.

3 Alignment of Roman Pots

An accurate alignment is of major importance for the TOTEM experiment in order to deliver
precise measurements. Among the subdetectors of TOTEM, the alignment of the RPs presents
the biggest challenge since they are movable. The importance of alignment is most pronounced
at the β∗ = 1535 m optics, where the beam divergence (the dominant smearing effect) is rather
low and hence the impact of any misalignment has a large relevance. To give a feeling, a
100 µm displacement of a vertical RP would lead to angular shift of about 0.4 µrad (based on
an effective length Ly ≈ 270 m, typical for this optics). This is to be compared to the spread
of the beam divergence 0.3 µrad.

We recall that the system of RPs is composed of two arms, each arm includes two stations,
each station comprises two units of 2 vertical and 1 horizontal RP and, finally, each RP contains
a package of 10 edge-less silicon detectors. The entire structure is intended to be aligned by
the following three steps.



)2lower bound of fit   (GeV

0.005 0.01 0.015 0.02

/d
t 

  
(%

)
σ

d
e
v
ia

ti
o

n
 i
n

 d

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Islam

Petrov-Predazzi-Prokudin, 2 pomerons

Petrov-Predazzi-Prokudin, 3 pomerons

Bourrely-Soffer-Wu

Block-Halzen

(e
x
tr

a
p

o
la

ti
o

n
 -

 m
o

d
e
l)

 /
 m

o
d

e
l

(a)

0

0.1

0.2

0.3

∆
t x

/
t x

o
r
∆
t y
/
t y

0 0.1 0.2 0.3 0.4 0.5

|tx| or |ty | (GeV2)

ty resolution

tx resolution

(b)

)-2lower bound of fit   (GeV

0.04 0.05 0.06 0.07 0.08

/d
t 

  
(%

)
σ

d
e
v
ia

ti
o

n
 i
n

 d

-6

-5

-4

-3

-2

-1

0

1

2

(e
x
tr

a
p

o
la

ti
o

n
 -

 m
o

d
e
l)

 /
 m

o
d

e
l

(c)

Figure 4: (a): the extrapolation deviation as a function of fit’s lower bound for the β∗ = 1535 m
optics. (b): comparison of tx and ty resolutions for the β∗ = 90 m optics. (c): the extrapolation
deviation as a function of the lower bound of the fit for the 90 m optics.

1. Internal alignment. That is an alignment of detectors within one RP with respect to
each other. To accomplish this task, a track-based algorithm has been developed. This
algorithm is inspired by Millepede [12]; it performs a consistent analysis of track residuals
to extract as much alignment information as possible. Any straight tracks traversing the
detector package can be used as an input for this method. Thus, test beam, cosmic test
data, beam halo tracks etc. can all be used. The procedure has been examined in beam
and cosmic tests and its results have been successfully compared to those of a laboratory
optical measurement – see Fig. 5 (b).

As the strip silicon detectors measure one coordinate only, one can not establish more
than one component of its (mis)-shift. To resolve the second transverse component of the
shift, we are currently investigating an alternative method – the efficiency drop around
the sensitive edge may help to pinpoint the position of the edge, hence a second shift
component. This is possible as the custom-developed detectors have very small insensitive
margin and thus the efficiency drop is well spatially localised.

2. Station alignment comprises two aspects – relative alignment of RP detectors within a
station and beam position determination. Regarding the first one, the same track-based
algorithm as for the internal alignment can be used. The only difference is that one needs
tracks passing through several RPs at a time. This is possible thanks to a key design
feature – the overlap (see Fig. 5 (a)) between vertical and horizontal RPs.

The alignment with respect to the beam requires usage of physics processes, in particular
their hit and angular distributions. Elastic scattering seems the most convenient in this
regard due to its full azimuthal symmetry. Then, a horizontal hit profile in vertical
RPs and a vertical profile in horizontal detectors shall unveil the beam’s position in the
horizontal and vertical direction respectively; see an example in Fig. 5 (c). As TOTEM
will operate at various optics, the rate of elastic protons will not always be high enough
and therefore diffractive processes will be used in addition.

The Beam Position Monitors (one mounted on each RP unit) can monitor relative beam



fluctuations with a precision of several microns. Absolute beam position measurements
are, however, exposed to a large uncertainty on the offset and thus need to be cross-
calibrated with results of other methods (e.g. the profile method from the previous para-
graph).

Another important device is the control of RP motors, which can resolve the position of
RP once it has been moved in a working place. After a careful absolute calibration a
resolution of about 10 µm is expected.

3. Global alignment, i.e. cross-alignment between stations in both arms of the experiment,
will rely on elastic tracks. Elastic protons have exactly (up to smearing effects) opposite
directions and thus provide a perfect tool for alignment of the opposite arms. Again, for
the third time, the tracks-based algorithm can be exploited.
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Figure 5: (a): An illustration of the detector overlap. (b): A comparison of alignment results
by the track based algorithm and the optical measurement. (c): An example of a profile to
determine the position of the beam – a horizontal profile of elastic hits in a top RP, for β∗ = 2 m
optics (the lowest elastic rate).

References

[1] TOTEM: Technical Design Report, CERN-LHCC-2004-002 (2004); addendum CERN-LHCC-2004-020.

[2] G. Anelli et al. [TOTEM Collaboration], JINST 3, S08007 (2008).

[3] S. Giani [TOTEM Collaboration], Diffraction at TOTEM, 13th International Conference on Elastic and
Diffractive Scattering, CERN (2009).

[4] F. Abe et al. [CDF Collaboration], Phys. Rev. D50 (1994) 5550.

[5] N. A. Amos et al. [E710 Collaboration], Phys. Rev. Lett. 68 (1992) 2433.

[6] G. Ruggiero [TOTEM Collaboration], TOTEM, 13th International Conference on Elastic and Diffractive
Scattering, CERN (2009).

[7] J. R. Cudell et al. [COMPETE Collaboration], Phys. Rev. Lett. 89 (2002) 201801.

[8] M. Deile [TOTEM Collaboration], Total cross-section measurement and diffractive physics with TOTEM,
12th International Conference on Elastic and Diffractive Scattering, Hamburg (2007)

[9] G. B. West and D. R. Yennie, Phys. Rev. 172 (1968) 1413.

[10] V. Kundrát and M. Lokaj́ıček, Z. Phys. C63 (1994) 619.
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