Higher-twist dynamics in large p_{\perp} hadron production

François Arleo

LAPTH, Annecy

Elastic and Diffractive Scattering 2009

CERN - June 2009

Outline

- Motivations
 - Scaling laws in inclusive processes
- Data analysis
 - hadron, photon, and jet scaling properties from fixed-target to colliders
 - comparing with NLO expectations
 - interpretations
- Phenomenology
 - predictions at RHIC and LHC

References

Brodsky, Sickles, Phys. Lett. B668 (2008) 111

FA, Brodsky, Hwang, Sickles, in preparation

Dimensional analysis

Scattering amplitude $1 \ 2 \cdots \rightarrow \dots n$ has dimension

$$\mathcal{M} \sim [\text{length}]^{n-4}$$

Consequence

In a conformal theory (no intrinsic scale), scaling of inclusive particle production

$$E \frac{d\sigma}{d^3p}(A B \to C X) \sim \frac{|\mathcal{M}|^2}{s^2} = \frac{F(x_{\perp}, \vartheta^{\text{cm}})}{p_{\perp}^{2n_{\text{active}} - 4}}$$

where $n_{
m active}$ is the number of fields participating to the hard process

 $x_{\perp} = 2p_{\perp}/\sqrt{s}$ and $\vartheta^{\rm cm}$: ratios of invariants

Dimensional analysis

Scattering amplitude $1 \ 2 \cdots \rightarrow \dots n$ has dimension

$$\mathcal{M} \sim [\text{length}]^{n-4}$$

Consequence

In a conformal theory (no intrinsic scale), scaling of inclusive particle production

$$E \frac{d\sigma}{d^3p}(A B \to C X) \sim \frac{|\mathcal{M}|^2}{s^2} = \frac{F(x_{\perp}, \vartheta^{\text{cm}})}{p_{\perp}^{2n_{\text{active}} - 4}}$$

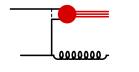
where $n_{
m active}$ is the number of fields participating to the hard process

$$x_{\perp}=2p_{\perp}/\sqrt{s}$$
 and $\vartheta^{\rm cm}$: ratios of invariants

Let's take the inclusive pion production as an example. . .

Scaling laws in inclusive pion production

• Conventional pQCD picture (leading twist): $2 \rightarrow 2$ process followed by fragmentation into a pion on long time scales



Scaling laws in inclusive pion production

• Conventional pQCD picture (leading twist): $2 \rightarrow 2$ process followed by fragmentation into a pion on long time scales

Direct higher-twist picture: pion produced directly in the hard process

$$n_{\rm active} = 5$$

$$E \frac{d\sigma}{d^3p}(p \ p \rightarrow \pi \ X) \sim \frac{F'(x_{\perp}, \vartheta^{\rm cm})}{p_{\perp}^6}$$

Scaling laws in inclusive pion production

- Conventional pQCD picture (leading twist): $2 \rightarrow 2$ process followed by fragmentation into a pion on long time scales
- Direct higher-twist picture: pion produced directly in the hard process

Remarks

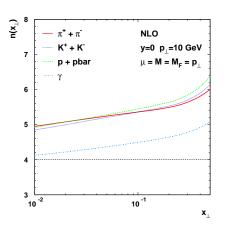
• $F(x_{\perp})$ falls faster than $F'(x_{\perp})$ with x_{\perp} from the larger number of spectator partons [Brodsky Burkardt Schmidt 1995]

$$F(x_{\perp}) \sim (1-x_{\perp})^{2n_{
m spectator}-1+2\Delta s}$$

ullet Higher-twist processes naturally suppressed at large p_{\perp}

Higher-twist contributions possible at high ${\it x}_{\! \perp}$ and not too large ${\it p}_{\! \perp}$

[Sivers Brodsky Blankenbecler 1975]


Scaling violations

QCD is not conformal

Scaling violations expected from

- running coupling
- evolution of parton densities and fragmentation functions
 Scaling exponent greater than 4 even in leading-twist QCD

Scaling violations

- Slight increase of n^h with x_+ from $n^h \simeq 5$ to 6
- ullet Smaller exponent in the photon sector: $n^{\gamma} \simeq n^h 1$
 - lesser scaling violations due to (almost) no fragmentation component

Scaling violations

QCD is not conformal

Scaling violations expected from

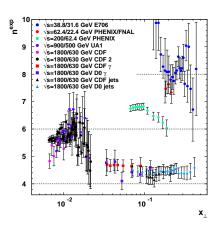
- running coupling
- evolution of parton densities and fragmentation functions
 Scaling exponent greater than 4 even in leading-twist QCD

This analysis: systematic comparison between data and NLO expectations

Data analysis

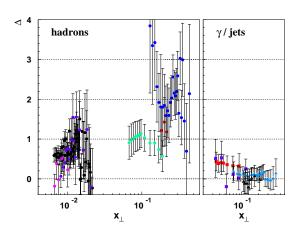
• Scaling exponent extracted by comparing x_1 spectra at two \sqrt{s}

$$n^{\rm exp}(x_{_\perp}) \equiv -\frac{\ln\left[\sigma^{\rm inv}(x_{_\perp},\sqrt{s_1})\big/\sigma^{\rm inv}(x_{_\perp},\sqrt{s_2})\right]}{\ln\left(\sqrt{s_1}\big/\sqrt{s_2}\right)}$$


within the same experiment in order to reduce systematic errors

- Particle production at mid-rapidity
 - hadrons $(\pi \text{ and } h^{\pm})$, prompt photons, jets
- Data sets
 - most recent measurements: CDF, D0, E706, PHENIX
 - ...as well as older ISR data

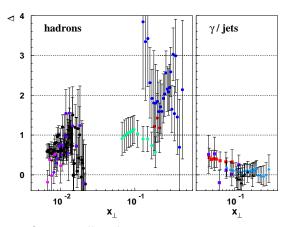
Data analysis


exp.	part.	\sqrt{s}	$p_{\scriptscriptstyle \perp}$	X_{\perp}	Ν
E706	π^0	31.6 / 38.8	2 – 9	$10^{-1} - 4.10^{-1}$	25
PHENIX/IS	${\sf SR}$ $\pi^{\sf O}$	62.4 / 22.4	2 - 7	$2.10^{-2} - 2.10^{-2}$	3
PHENIX	π^{0}	62.4 / 200	2 - 19	$7.10^{-2} - 2.10^{-1}$	12
UA1	h^\pm	500 / 900	2 - 9	$8.10^{-3} - 2.10^{-2}$	18
CDF	h^\pm	630 / 1800	2 - 9	$7.10^{-3} - 10^{-2}$	5
CDF	tracks	630 / 1800	2 – 19	$7.10^{-3} - 2.10^{-2}$	52
CDF	γ	630 / 1800	11 – 81	$3.10^{-2} - 9.10^{-2}$	7
D0	γ	630 / 1800	11 – 107	$3.10^{-2} - 10^{-1}$	6
CDF	jets	546 / 1800	29 – 190	$10^{-1} - 2.10^{-1}$	9
D0	jets	630 / 1800	23 – 376	$8.10^{-2} - 4.10^{-1}$	23

Results

- ullet Significant increase of the hadron $n^{
 m exp}$ with $x_{\!\scriptscriptstyle \perp}$
 - $n^{
 m exp} \simeq 8$ at large x_{\perp}
- Huge contrast with photons and jets!
 - n^{exp} constant and slight above 4 at all x_1

Comparing to QCD



NLO calculations carried out within the experimental kinematics

$$\Delta(x_{\perp}) \equiv n^{\rm exp} - n^{\rm NLO}$$

Comparing to QCD

- $\Delta^h \simeq 0.5 2$ from small to large x_{\perp}
- $\Delta^{\gamma/\text{jets}}$ consistent with 0
- ullet Error bars include theoretical uncertainty $\mu=p_{_\perp}/2$ to $2p_{_\perp}$

Interpretations

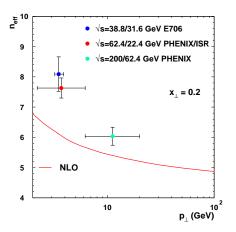
Resumation of large "threshold" logs $\ln(1-x_{\perp})$ could explain part of the data. However,

- ullet no effects in photons/jets despite the large x_{\perp}
- ullet data theory discrepancy even at small $x_{\scriptscriptstyle \parallel} \sim 10^{-2}$

Most natural explanation

Higher-twist contributions $q\ ar q\ o g\ \pi$ and $q\ g\ o q\ \pi$

- HT effects absent in photon and jet production
- ISR data indicate a larger proton exponent: $n^p \simeq n^\pi + 1$


$$q \ q \ \rightarrow p \ \overline{q} \ (n=6) \Rightarrow E \ \frac{d\sigma}{d^3p} (p \ p \ \rightarrow p \ X) \sim \frac{1}{p_{\perp}^8}$$

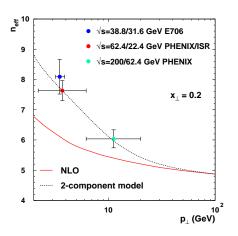
scale dependence

Scale dependence

Pion exponent extracted vs. p_{\perp} at fixed x_{\perp}

Scale dependence

Pion exponent extracted vs. p_{\perp} at fixed x_{\perp}


2-component toy-model

$$\sigma^{
m model}(pp o\pi~{
m X}\,)\propto rac{A(x_{\perp})}{p_{\perp}^4}+rac{B(x_{\perp})}{p_{\perp}^6}$$

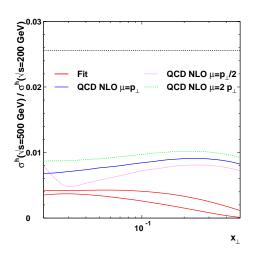
Define effective exponent

$$n_{\text{eff}}(x_{\perp}, p_{\perp}, B/A) \equiv -\frac{\partial \ln \sigma^{\text{model}}}{\partial \ln p_{\perp}} + n^{\text{NLO}}(x_{\perp}, p_{\perp}) - 4$$
$$= \frac{2B/A}{p_{\perp}^{2} + B/A} + n^{\text{NLO}}(x_{\perp}, p_{\perp})$$

Scale dependence

- Fit gives $[B(x_{+})/A(x_{+})]^{1/2} \simeq 4 7 \text{ GeV}$
- Could be significantly reduced because of trigger bias effect

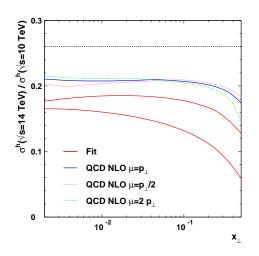
Phenomenology


Predictions at RHIC and LHC

$$R_{\sqrt{s_1}/\sqrt{s_2}}(x_{\perp}) \equiv (\sqrt{s_2}/\sqrt{s_1})^{n^{\mathrm{fit}}(x_{\perp},p_{\perp}=x_{\perp}\sqrt{s}/2)}$$

with $n^{\mathrm{fit}}(x_{\scriptscriptstyle \perp},p_{\scriptscriptstyle \perp})$ extracted from a fit to Tevatron, PHENIX, and E706 data

- RHIC: $\sqrt{s_1} = 500$ GeV vs. $\sqrt{s_2} = 200$ GeV
- LHC: $\sqrt{s_1}=14$ TeV vs. $\sqrt{s_2}=10$ TeV


Phenomenology

- Ratio well below the conformal limit expectation, even within NLO
- Possible breakdown of NLO visible also between 200 and 500 GeV

EDS 2009 - CERN

Phenomenology

• Differences also expected at the LHC

Summary

Scaling laws

powerful probe of hadron production dynamics

Analysis

- exponents systematically extracted from hadron, photon and jet data
- significant discrepancy in the hadron sector, esp. at large x_{\perp}
- supports a non-negligible higher-twist contribution in large p_{\perp} hadron production (first seen at ISR)

Phenomenology

- ratio of x_i spectra predicted at RHIC and LHC
- possible breakdown of NLO QCD could also be seen at these energies
- important implications in heavy-ion collisions: color singlet states penetrate dense media due to color transparency

[Brodsky Pirner Raufeisen 2006, Brodsky Sickles 2008]