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We discuss effects of reflective scattering for hadron and heavy nuclei collisions at the LHC
and asymptotic energies. It is shown that the reflective scattering might lead to decreasing
matter density with energy beyond the LHC energies. A limiting form of energy dependence
of the hadron density is obtained. The unitarity upper bound for the absolute value of
the real part of the elastic scattering amplitude and two-particle inelastic binary reaction
amplitudes in impact parameter representation is two times less than the corresponding
bound for the imaginary part of the elastic scattering amplitude. The former limit restricts
a possible odderon contribution.

1 Reflective Scattering

A new physical interpretation of unitarity saturation in elastic scattering as a reflective scat-
tering was proposed in [1] proceeding from optical analogy. This interpretation is related to
the non-perturbative aspects of strong interactions and follows from the specific property of
the unitarity saturation when the elastic S-matrix becomes negative and S(s, b)|b=0 → −1 at
s → ∞. It should be noted that S(s, b) = 1 + 2if(s, b), where f(s, b) is the elastic scattering
amplitude in the impact parameter representation.

In particular, we would like to note that the possible values of the elastic S matrix can be
negative (in the pure imaginary case). Transition to the reflective scattering mode is naturally
reproduced by the U -matrix form of elastic unitarisation. The elastic scattering S-matrix
(2 → 2 scattering matrix element) in the impact parameter representation is written in this
unitarisation scheme in the form of a linear fractional transform:

S(s, b) =
1 + iU(s, b)

1 − iU(s, b)
, (1)

where U(s, b) is the generalised reaction matrix, which is considered to be an input dynamical
quantity. For simplicity we consider the case of a pure imaginary U -matrix and make the
replacement U → iU in (1). The reflective scattering mode (S(s, b) < 0) starts to appear at the
energy sR, which is determined as a solution of the equation U(sR, b = 0) = 1. At s > sR the
elastic scattering acquires ability for reflection, while the inelastic overlap function hinel(s, b)
gets a peripheral impact parameter dependence in the region s > sR. It should be noted that
unitarity condition for the elastic scattering amplitude F (s, t), which can be written in the form

ImF (s, t) = Hel(s, t) + Hinel(s, t), (2)

where Hel,inel(s, t) are the corresponding elastic and inelastic overlap functions introduced by
Van Hove [2]. The functions Hel,inel(s, t) are related to the functions hel,inel(s, b) via the



Fourier-Bessel transforms, i.e.

Hel,inel(s, t) =
s

π2

∫

∞

0

b db hel,inel(s, b)J0(b
√
−t). (3)

The elastic and inelastic cross-sections can be obtained as follows:

σel,inel(s) ∼
1

s
Hel,inel(s, t = 0). (4)

Saturation of unitarity leads to the peripheral dependence of hinel(s, b). It is a manifestation of
the self-damping of the inelastic channels at small impact parameters. The function hinel(s, b)
reaches its maximum value at b = R(s), note that

R(s) ∼ 1

M
ln s,

while an elastic scattering (due to reflection) occurs effectively at smaller values of impact
parameter, i.e. 〈b2〉el < 〈b2〉inel. At the values of energy s > sR the equation U(s, b) = 1
has a solution in the physical region of impact parameter values, i.e. S(s, b) = 0 at b = R(s).
Fig. 1 shows the regions where elastic S-matrix has positive and negative values. Of course,
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Figure 1: Regions of positive (absorptive scattering) and negative values (absorptive and reflective
scattering) of the function S(s, b) in the s and b plane.

the reflective scattering exists only in the elastic channel. For example, all inelastic binary
reactions have amplitudes f̃(s, b) in the impact parameter representation, which satisfy the
inequality |f̃(s, b)| ≤ 1/2, while the elastic scattering amplitude satisfies |f(s, b)| ≤ 1. It follows
from unitarity equation in the impact parameter representation:

Imf(s, b) = hel(s, b) + hinel(s, b);

amplitudes f̃(s, b) contribute to hinel(s, b). The upper bound for the elastic scattering cross-
section is four times higher than the upper bound for the inelastic cross-section as it was recently



demonstrated in [3]. Scattering dynamics in the elastic channel such as pp → pp is therefore
strikingly different, e.g. from the inelastic binary diffractive process, such as pp → pN , where
N is an isobar. The latter reactions should have a peripheral impact parameter profile, which
can be related to the dominating contribution of helicity-flip amplitudes. The unitarity limit
and black disk limit are the same for the inelastic overlap function, but those limits are different
for the elastic overlap function

hel(s, b) ≡ |f(s, b)|2.
The unitarity limit for the elastic overlap function is four times higher than the black disk limit.
This is an important point for consideration of exclusive limit of inclusive reactions. Saturation
of unitarity leads to suppression of the inelastic cross-section, i.e. at fixed impact parameter
(b < R(s)) hinel(s, b) → 0 at s → ∞ and

σel(s) ∼ R2(s), σinel(s) ∼ R(s). (5)

Thus, Hel(s, t) which has the following t-dependence

Hel(s, t) ∼
RJ1(R

√
−t)√

−t
,

dominates over Hinel(s, t), which depends on t like

Hinel(s, t) ∼ RJ0(R
√
−t),

at −t = 0, but it is not the case for the scattering in the non-forward directions. In this region
these two functions have similar energy dependencies proportional to R1/2(s) at rather large
fixed values of −t. The mean impact parameter values for elastic and inelastic interactions have
also similar energy dependencies

〈b2〉el(s) ∼ R2(s), 〈b2〉inel(s) ∼ R2(s), (6)

but the value of impact parameter averaged over all interactions (cf. [4])

〈b2〉tot(s) =
σel(s)

σtot(s)
〈b2〉el(s) +

σinel(s)

σtot(s)
〈b2〉inel(s)

acquires the main contribution from elastic scattering according to Eq. (5). Therefore, the
inelastic intermediate states will give subleading contribution to the slope of diffraction cone
B(s),

B(s) ≡ d

dt
ln

(

dσ

dt

)∣

∣

∣

∣

t=0

,

at asymptotic energies. Indeed, since B(s) ∼ 〈b2〉tot(s), it can be written in the form

B(s) = Bel(s) + Binel(s),

where Bel(s) ∼ R2(s), while Binel(s) ∼ R(s). It should be noted that both terms Bel(s) and
Binel(s) are proportional to R2(s) in case of the absorptive scattering.

Under reflective scattering, the behaviour of the function Hinel(s, t) is determined by a
peripheral impact parameter profile and its −t dependence is different. Meanwhile, the elastic



overlap function Hel(s, t) has similarities with that function in the case of approach where
absorption is only presented. As a result, zeroes and maxima of the functions Hel(s, t) and
Hinel(s, t) will be located at different values of −t and zeroes and maxima of ImF (s, t) will also
be located at different position in the cases of absorptive and the reflective scattering. In the
case of reflective scattering, dips and maxima will be located in the region of lower values of −t.
We would like to note that the presence of reflective scattering enhances the large −t region
by factor

√
−t compared to absorptive scattering. Despite that these two mechanisms lead

at the asymptotics to the significant differences in the total, elastic and inelastic cross-section
dependencies, their predictions for the differential cross-section of elastic scattering are not so
much different at small and moderate values of −t.

2 Intermittent Remark on Unitarity and Real Part of

Scattering Amplitude

It is evident that there are serious difficulties in accounting all known dynamical issues and
limitations into a particular phenomenological model. But it is equally difficult to expect that
the model inconsistent with unitarity (i.e. the one violating probability conservation law) would
adequately reflect the dynamics of hadron interaction and provide reliable predictions. To fulfill
unitarity condition under a model construction of the elastic amplitudes, it is natural to use
unitarisation approaches such as eikonal or U -matrix, which consider amplitudes in the impact
parameter space. They automatically guarantee that elastic amplitude in the impact parameter
representation will obey unitarity condition.

Despite that the full implementation of unitarity is not possible nowadays (cf. e.g. [5]), the
amplitude in the impact parameter space should not exceed unity anyway. However, when the
amplitude F (s, t) is constructed in the s and t representation, it is a priori not evident that the
particular form of this amplitude being transformed into the impact parameter space f(s, b)
would satisfy unitarity. This remains to be true, even when the model under consideration
leads to the predictions for observables which explicitly agree with axiomatic bounds, e.g. such
as well known Froissart-Martin bound for the total cross-sections. Getting agreement with
experimental data at finite energies and asymptotic bounds at s → ∞ is not enough since a
wide class of functional dependencies can successfully describe experimental data and provide
correct asymptotic behaviour. Additional steps to justify that the impact parameter amplitude
is at least less than unity in the whole region of kinematic variables are necessary.

In the above remarks we supposed that imaginary part of scattering amplitude is a domi-
nating one. Further unitarity restriction exists for models which do not suppose domination of
imaginary part of scattering amplitude, such as models with maximal odderon contribution [6].

Indeed, unitarity condition in the impact parameter representation for the elastic scattering
amplitude can be rewritten in the form:

Imf(s, b)[1− Imf(s, b)] = [Ref(s, b)]2 + hinel(s, b).

Since 0 ≤ Imf(s, b) ≤ 1, we obtain that unitarity limits the real part of scattering amplitude
in the following way

[Ref(s, b)]2 ≤ 1/4,

−1

2

√

1 − 4hinel(s, b) ≤ Ref(s, b) ≤ 1

2

√

1 − 4hinel(s, b).



The function Ref(s, b) can be sign changing one in contrast with Imf(s, b)). This limitation,
as it was already mentioned, is essential for the models with odderon and is indirectly in favour
of the standard procedure of neglecting the real part of scattering amplitude compared to its
imaginary part. It also is evident that absolute value of the real part and imaginary part of
elastic scattering amplitude f(s, b) cannot reach their maximal values simultaneously, moreover
when Imf(s, b) → 1, saturating unitarity limit at large values of s in the region b < R(s), then
Ref(s, b) → 0 in this kinematic region. It should be noted that this saturation does not suppose
that Ref(s, b) vanish everywhere. It means that [Ref(s, b)]2 should have a peripheral impact
parameter profile. The same conclusion is valid when Imf(s, b) → 1/2, saturating the black disk
limit at large values of s in the region b < R(s), then Ref(s, b) → 0 because hinel(s, b) → 1/4 in
this region. The above difference in the impact parameter profiles would result in the different
energy dependencies of ImF (s, t = 0) and ReF (s, t = 0) bringing maximal odderon on the edge
of contradiction with unitarity (or black disk) limit saturation. Of course, unitarity or black
disk limits saturation itself does not follow from axiomatic field theory, but we would like to
note, that it is much more natural to expect that it could be a manifestation of a maximal
strength of strong interaction instead of behaviour of the real part of the forward scattering
amplitude in the form ReF (s, t = 0) ∼ s ln2 s as it happens in the models incorporating the
maximal odderon regime.

3 Reflective Scattering and Deconfinement

Possible existence of the reflective scattering at very high energies implies that confinement
becomes stronger and stronger as the collision energy increases and proton collisions resemble
more and more collisions of hard spheres. In this section we address one aspect of the broad
problem of transition to the deconfined state of matter, namely, we discuss the role of the
reflective scattering on the energy dependence of density in the percolation mechanism of the
transition to the deconfined state of matter.

The main idea of the percolation mechanism of deconfinement is a formation in the certain
volume of a connected hadron cluster due to increasing temperature and/or hadron density [7],
i.e. when vacuum as a connected medium disappears, the deconfinement takes place. This
process has typical critical dependence on particle density. Thus, it was proposed to use per-
colation to define the states of matter and consider the disappearance of a large-scale vacuum
as the end of hadronic matter existence [7, 8].

The probability of reflective scattering at b < R(s) and s > sR is determined by the
magnitude of |S(s, b)|2; this probability is equal to zero at s ≤ sR and b ≥ R(s) (region I in
Fig. 1). At the energies s > sR reflective scattering will mimic the presence of a repulsive
core in hadron and meson interactions. Presence of the reflective scattering can be accounted
for using van der Waals method (cf. [9]). This approach was used originally for description of
the fluids behaviour starting from the gas approximation by means of taking into account the
nonzero size of molecules. Consider central collision of two identical nuclei having N hadrons in
total with centre-of-mass energy

√
s per nucleon and calculate hadron density nR(T, µ) = N/V

in the initial state at given temperature T and baryochemical potential µ in the presence of
reflective scattering. The effect of the reflective scattering of hadrons is equivalent to decrease
of the volume of the available space which the hadrons are able to occupy in the case when
reflective scattering is absent. Thus following to van der Waals method, we must then replace



volume V by

V − pR(s)VR(s)
N

2
,

i.e. we should write

n(T, µ) =
N

V − pR(s)VR(s)N
2

,

where n(T, µ) is hadron density without account for reflective scattering and pR(s) is the aver-
aged over volume VR(s) probability of reflective scattering:

pR(s) =
1

VR(s)

∫

VR(s)

|S(s, r)|2d3x.

The volume VR(s) is determined by the radius of the reflective scattering. Here we assume
spherical symmetry of hadron interactions, i.e. we replace impact parameter b by r and ap-
proximate the volume VR(s) by VR(s) ' (4π/3)R3(s). Hence, the density nR(T, µ) is connected
with corresponding density in the approach without reflective scattering n(T, µ) by the following
relation

nR(T, µ) =
n(T, µ)

1 + α(s)n(T, µ)
,

where α(s) = pR(s)VR(s)/2. Let us now estimate change of the function nR(T, µ) due to the
presence of reflective scattering. We can approximate pR(s) by the value of |S(s, b = 0)|2 which
tends to unity at s → ∞. It should be noted that the value

√
sR ' 2TeV [10]. Below this

energy there is no reflective scattering, α(s) = 0 at s ≤ sR, and therefore corrections to the
hadron density are absent. Those corrections are small when the energy is not too much higher
than sR. At s ≥ sR the value of α(s) is positive, and presence of reflective scattering diminishes
hadron density. We should expect that this effect would already be noticeable at the LHC
energy

√
s ' 5 TeV in Pb+Pb collisions. At very high energies (s → ∞)

nR(T, µ) ∼ 1/α(s) ∼ M3/ ln3 s.

This limiting dependence for the hadron density appears due to the presence of the reflective
scattering which results in similarity of head-on hadron collisions with scattering of hard spheres.
It can be associated with saturation of the Froissart-Martin bound for the total cross-section.
It should be noted that this dependence has been obtained under assumption on spherical
symmetry of hadron interaction region. Without this assumption, limiting dependence of the
hadron density in transverse plane can only be obtained, i.e. transverse plane density of hadrons
would have then the following behaviour

nR(T, µ) ∼ M2/ ln2 s.

To conclude this section, we would like to note that the lower densities of hadron matter are
needed for percolation (and transition to the deconfined state) in the presence of reflective
scattering. It might be useful to note that the rescattering processes are also affected by the
reflective scattering. Reflective scattering would lead to noticeable effects at the LHC energies
and beyond and could help in searches of the deconfined state and studies of properties of
transition mechanism to this state of matter which might proceed by means of percolation.
Thus, it will affect description of initial state dynamics in nuclear interactions at the LHC
energies by introducing notion of limiting density of strongly interacting matter at respective
energies.



4 Conclusion

Thus, at very high energies there would be two different regions of impact parameter distances
in particles collisions, namely the outer region (peripheral collisions) where elastic scattering
has exclusively a shadow origin and inner region (central collisions) where reflective and absorp-
tive scattering give competing contributions, reflective scattering contribution increases while
absorptive scattering contribution decreases at fixed impact parameter. It is not surprising
that the model with reflective scattering contribution leads to significantly higher values for
total and elastic cross-sections at the LHC energies1 while it renders the standard values for
the inelastic cross-section. In the geometric terms, the generic scattering picture at fixed en-
ergy beyond the black disc limit can be described as a scattering off a partially reflective and
partially absorptive disk surrounded by the black ring (which becomes grey at larger values of
the impact parameter). The evolution with energy is characterised by increasing albedo due to
the interrelated increase of reflection and decrease of absorption at small impact parameters.
This picture predicts that the scattering amplitude at the LHC energies is beyond the black
disk limit at small impact parameters and it provides explanation for the regularities observed
in cosmic rays studies, e.g. the existence of the knee in the cosmic rays spectrum. It leads
also appearance of limiting density dependent on energy which takes place only at very high
energies and has an origin related to unitarity saturation.
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