Diffraction at TOTEM

EDS'09

S. Giani on behalf of the TOTEM Collaboration

All scattered		TOTEM Physics programme	
protons	-{	Total pp cross section at 14TeV with a precision of 1-2%	
Elastically scattered protons		Elastic pp scattering,10 ⁻³ GeV ² < -t < 10 GeV ²	
		Soft Single & Central Diffraction (SD, DPE)	
		Leading particle & energy flow in forward direction	
Inelastically scattered protons		Semi-hard + hard Single & Central Diffraction: production of jets, W, heavy flavours	W I T
		Exclusive particle production in Central Diffraction	н
		Low–x dynamics	С
		γγ & γp physics	M S

Physics program for the LHC start

Diffraction at low/medium luminosity: SD, DPE

Total cross section with a precision of about 5% (special optics B*=90m) Multiplicity distributions

TOTEM Physics Overview

pp Interactions

Non-diffractive

Colour exchange

dN / d $\Delta \eta$ = exp (- $\Delta \eta$)

Diffractive

Colourless exchange with vacuum quantum numbers

dN / d $\Delta \eta$ = const

Incident hadrons acquire colour and break apart

Incident hadrons retain their quantum numbers remaining colourless

GOAL: understand the QCD nature of the diffractive exchange

Inelastic and Diffractive Processes ($\eta = -\ln tg \theta/2$)

In case of hard interactions there should be jets, which fall in the same rapidity intervals. All the drawings show soft interactions.

6/29/2009

6

Diffractive scattering is a unique laboratory of confinement & QCD: A hard scale + hadrons which remain intact in the scattering process

Diffractive forward protons @ RPs

$$y(s) = v_y(s) \cdot y^* + L_y(s) \cdot \Theta_y^*$$

$$x(s) = v_x(s) \cdot x^* + L_x(s) \cdot \Theta_x^* + \xi \cdot D(s)$$

Dispersion shifts diffractive protons in the horizontal direction

TOTEM diffractive protons' acceptance in RPs

Early measurements with RPs (+ T1 & T2)

dσ

 $d\Delta\eta$

 $\begin{array}{l} p=5 \mbox{ TeV}, \ \beta *=3m\\ \mbox{Acceptance: } 0.02 < \xi < 0.18, \ \xi = \Delta p/p\\ \mbox{Resolution: } \sigma(\xi) \sim 1-6 \cdot 10^{-3}, \ \sigma(\Theta^*) \sim 15 \ \mu rad \end{array}$

 $\varphi \xrightarrow{\Delta \eta_i \approx -\ln \xi_i} M_X^2 = \xi_1 \xi_2 s \xrightarrow{\Delta \eta_2} P_2$ -12
+12 η

 $\approx \text{constant} \Rightarrow \frac{d\sigma}{dM^2} \sim \frac{1}{M^2} \Rightarrow \frac{d\sigma}{d\xi} \sim \frac{1}{\xi}$

• Elastic Scattering, vertical RPs: $d \sigma^{ES}/dt$ for $2 < |t| < 10 \text{ GeV}^2$, $\sigma(t)/t \sim 0.2/\sqrt{|t|}$ $\sigma(t)/t \sim 0.2/\sqrt{|t|}$

10

Early measurements T1 & T2

• Charged multiplicity studies (essential for minimum bias and cosmic ray MC generators tuning / validation)

• Rapidity gap studies (topologies of diffractive events)

Pseudorapidity Distributions for SD

6/29/2009

Differential mass distribution in DPE

Study of mass distributions via the 2 protons

- Trigger with 2p+T1/T2: rate ~200Hz @ β^* =90m, L=10³⁰cm⁻²s⁻¹
- TOTEM trigger rate limit ~2kHz
- ξ measured directly (TOTEM) or

 - With rapidity gap $\Delta \eta$ =-ln ξ With calorimeters $\xi = \sum_{i} E_{T}^{i} e^{\mp \eta_{i}} / \sqrt{s}$ (TOTEM+CMS)

low/medium luminosity

CMS + TOTEM: Acceptance

largest acceptance detector ever built at a hadron collider

90% (65%) of all diffractive protons are detected for β^* = 1540 (90) m

Running Scenarios Summary

Scenario Physics:	1 low t elastic, σ _{tot} (@ ~1%), MB, soft diffr	2 low/large t elastic, σ _{tot} (@ ~5%), MB soft/semi-b diffr	3 large t elastic, hard diffraction
β* [m]	1540	90	2 ÷ 0.5
N of bunches	43 ÷ 156	156	936 ÷ 2808
Bunch spacing [ns]	2025 ÷ 525	525	25
N of part. per bunch	(0.6 ÷ 1.15) x 10 ¹¹	1.15 x 10 ¹¹	1.15 x 10 ¹¹
Half crossing angle [µrad]	0	0	92
Transv. norm. emitt. ε _n [μm rad]	1	3.75	3.75
RMS beam size at IP [µm]	450	213	32
RMS beam diverg. at IP [µrad]	0.3	2.3	16
Peak Luminosity [cm ⁻² s ⁻¹]	10 ²⁸ ÷ 2 x 10 ²⁹	3 x 10 ³⁰	10 ³³

Cro	oss section	Luminosity		
β* (m)	1540	90	2	0.5
L (cm ⁻² s ⁻¹)	10 ²⁹	10 ³⁰	10 ³²	10 ³³
TOTEM runs			Standard	runs

beam ang. spread at IP: $\sigma_{\theta^*} = \sqrt{(\epsilon / \beta^*)}$ beam size at IP: $\sigma^* = \sqrt{(\epsilon \beta^*)}$

• Optimal $\beta^* = 1540$ m optics requires special injection optics: probably NOT available at the beginning of LHC

• Early β * = 90m optics achievable using the standard LHC injection optics

Accessible physics depends on luminosity & β*