### Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions at STAR

#### Boris Grube

Excellence Cluster Universe Technische Universität München, Garching, Germany



13<sup>th</sup> International Conference on Elastic & Diffractive Scattering CERN, Geneva, 2<sup>nd</sup> July 2009



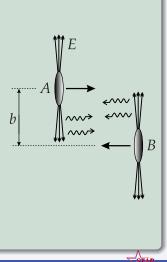
### Outline

#### Introduction

- Ultra-peripheral relativistic heavy ion collisions
- Experimental setup
- Triggering and data selection
- 2 Results on photonuclear vector meson production in Au  $\times$  Au collisions
  - $\rho$  photoproduction cross section
  - Interference effects in  $\rho$  photoproduction
  - $\pi^+\pi^-\pi^+\pi^-$  photoproduction

### Outline

Iltra-peripheral relativistic heavy ion collisions Experimental setup Triggering and data selection

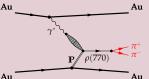

### Introduction

- Ultra-peripheral relativistic heavy ion collisions
- Experimental setup
- Triggering and data selection
- Results on photonuclear vector meson production in Au × Au collisions
  - $\rho$  photoproduction cross section
  - Interference effects in *ρ* photoproduction
  - $\pi^+\pi^-\pi^+\pi^-$  photoproduction

Ultra-peripheral relativistic heavy ion collisions Experimental setup Triggering and data selection

### Ultra-Peripheral Heavy Ion Collisions (UPC)

- Nuclei surrounded by cloud of quasi-real virtual photons
- Number of photons large ( $\propto Z^2$ )
- Fast-moving heavy ions produce intense photon flux
  - Described by Weizsäcker-Williams approximation ("nuclear flashlight")
- Nuclear collisions: long range interaction via electromagnetic fields in addition to hadronic interactions
- Require  $b > R_A + R_B$  to exclude (otherwise inseparable) hadronic interactions

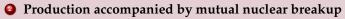



Ultra-peripheral relativistic heavy ion collisions Experimental setup Triggering and data selection

### Photonuclear interactions in UPCs

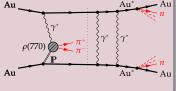
#### Vector meson production

- Exclusive production
  - $\gamma^*$  from "emitter" nucleus fluctuates into  $q\bar{q}$ -pair
  - *qq̄*-pair scatters off "target" nucleus into real vector meson
  - Scattering described in terms of soft Au Pomeron exchange




- Production accompanied by mutual nuclear breakup
- Predominantly Coulomb excitation of Giant Dipole Resonances (GDRs)
- Independent of meson production
- GDRs decay via neutron emission
  - $\implies$  distinctive signature

### Photonuclear interactions in UPCs


#### Vector meson production

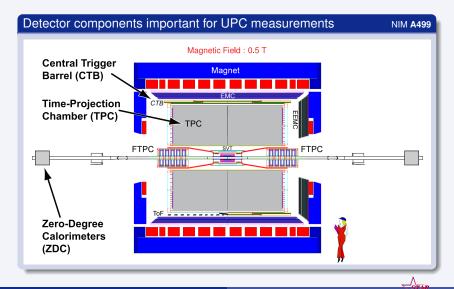
- Exclusive production
  - $\gamma^*$  from "emitter" nucleus fluctuates into  $q\bar{q}$ -pair
  - *qq̄*-pair scatters off "target" nucleus into real vector meson
  - Scattering described in terms of soft Au Pomeron exchange



Boris Grube

- Predominantly Coulomb excitation Au of Giant Dipole Resonances (GDRs)
- Independent of meson production
- GDRs decay via neutron emission
  - $\implies$  distinctive signature




 $\rho(77)$ 

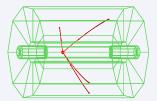
Au

Au

Introduction Results on photonuclear vector meson production in Au imes Au collisions Ultra-peripheral relativistic heavy ion collisions Experimental setup Triggering and data selection

### The STAR Experiment at RHIC




Results on photonuclear vector meson production in Au  $\times$  Au collisions

Ultra-peripheral relativistic heavy ion collisions Experimental setup Triggering and data selection

### Triggering and Data Selection



Clean 2-prong event

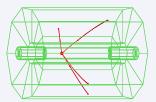


Clean 4-prong event

#### Experimental signature and event selection

- Low overall track multiplicity
- 2 or 4 well reconstructed tracks
  - From common vertex
  - Zero net charge
- Vertex position close to interaction diamond
- Coherent production dominates: produced vector mesons have low  $p_T \lesssim 2\hbar/R_A \approx 60 \text{ MeV/}c$
- For nuclear breakup: additional forward neutrons ⇒ trigger

STAR acceptance limits accessible rapidities to |y|<


Results on photonuclear vector meson production in Au  $\times$  Au collisions

Ultra-peripheral relativistic heavy ion collisions Experimental setup Triggering and data selection

### Triggering and Data Selection



Clean 2-prong event

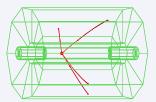


Clean 4-prong event

#### Experimental signature and event selection

- Low overall track multiplicity
- 2 or 4 well reconstructed tracks
  - From common vertex
  - Zero net charge
- Vertex position close to interaction diamond
- Coherent production dominates: produced vector mesons have low  $p_T \lesssim 2\hbar/R_A \approx 60 \text{ MeV/}c$
- For nuclear breakup: additional forward neutrons ⇒ trigger

STAR acceptance limits accessible rapidities to |y|<1


Results on photonuclear vector meson production in Au  $\times$  Au collisions

Ultra-peripheral relativistic heavy ion collisions Experimental setup Triggering and data selection

### Triggering and Data Selection



Clean 2-prong event

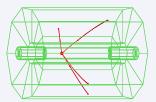


Clean 4-prong event

#### Experimental signature and event selection

- Low overall track multiplicity
- 2 or 4 well reconstructed tracks
  - From common vertex
  - Zero net charge
- Vertex position close to interaction diamond
- Coherent production dominates: produced vector mesons have low  $p_T \lesssim 2\hbar/R_A \approx 60 \text{ MeV/}c$
- For nuclear breakup: additional forward neutrons ⇒ trigger

STAR acceptance limits accessible rapidities to |y|<


Results on photonuclear vector meson production in Au  $\times$  Au collisions

Ultra-peripheral relativistic heavy ion collisions Experimental setup Triggering and data selection

### Triggering and Data Selection



Clean 2-prong event



Clean 4-prong event

#### Experimental signature and event selection

- Low overall track multiplicity
- 2 or 4 well reconstructed tracks
  - From common vertex
  - Zero net charge
- Vertex position close to interaction diamond
- Coherent production dominates: produced vector mesons have low  $p_T \lesssim 2\hbar/R_A \approx 60 \text{ MeV/}c$
- For nuclear breakup: additional forward neutrons ⇒ trigger

#### STAR acceptance limits accessible rapidities to |y| < 1

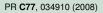
Ultra-peripheral relativistic heavy ion collisions Experimental setup Triggering and data selection

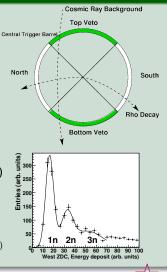
### **UPC** Triggers

#### 2 triggers used at STAR

- Topology trigger (CTB only)
  - CTB is subdivided into 4 quadrants
  - Top+Bottom quadrants veto cosmic rays
  - Coincidence of North and South quadrants
  - Does not require nuclear breakup
- Image: Minimum bias trigger (CTB + ZDC)
  - Low hit multiplicity in CTB
  - Coincident neutrons from nuclear breakup in both ZDCs

PR **C77**, 034910 (2008)





Ultra-peripheral relativistic heavy ion collisions Experimental setup Triggering and data selection

### **UPC** Triggers

#### 2 triggers used at STAR

- Topology trigger (CTB only)
  - CTB is subdivided into 4 quadrants
  - Top+Bottom quadrants veto cosmic rays
  - Coincidence of North and South quadrants
  - Does not require nuclear breakup
- **Image:** Minimum bias trigger (CTB + ZDC)
  - Low hit multiplicity in CTB
  - Coincident neutrons from nuclear breakup in both ZDCs





### Outline

photoproduction cross section interference effects in  $\rho$  photoproduction  $r^+ \pi^- \pi^+ \pi^-$  photoproduction

#### Introduction

- Ultra-peripheral relativistic heavy ion collisions
- Experimental setup
- Triggering and data selection
- 2 Results on photonuclear vector meson production in Au  $\times$  Au collisions
  - $\rho$  photoproduction cross section
  - Interference effects in  $\rho$  photoproduction
  - $\pi^+\pi^-\pi^+\pi^-$  photoproduction

Results on photonuclear vector meson production in Au × Au collisions

photoproduction cross section

### ho Production in Au imes Au @ $\sqrt{s_{_{NN}}}=200\,{ m GeV}$ PR c77, 034910 (2008)

 $\pi^+\pi^-$  invariant mass distributions (acceptance corrected)

- Topology trigger 2 Minimum bias trigger No nuclear breakup ZDC neutron tag required Entries (arb. units) 0009 0009 000 Juits (arb. 250 Entries 1200 4000 100 2000 0.5 0.5 Inv. Mass (GeV/c2) Inv. Mass (GeV/c2)
- Background estimate (gray shaded) from like-sign pairs  $\pi^{\pm}\pi^{\pm}$
- Mass spectrum fit with relativistic *p*-wave Breit-Wigner with Söding interference term (direct  $\pi^+\pi^-$  production)

Results on photonuclear vector meson production in Au  $\times$  Au collisions

photoproduction cross section

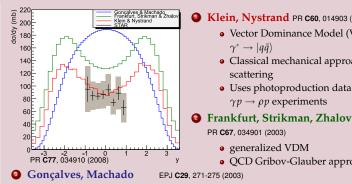
Klein, Nystrand PR C60, 014903 (1999)

 $\gamma^* \rightarrow |a\bar{a}\rangle$ 

scattering

PR C67, 034901 (2003) generalized VDM

• Vector Dominance Model (VDM) for


Classical mechanical approach for

Uses photoproduction data from

 $\gamma p \rightarrow \rho p$  experiments

### $\rho$ Production Cross Section

#### Comparison with model predictions for Au $\times$ Au @ $\sqrt{S_{NN}} = 200 \text{ GeV}$



- QCD color dipole approach
- Includes nuclear effects and parton saturation phenomena
- Limited y-range does not allow to discriminate shapes
- Klein, Nystrand model agrees well with data

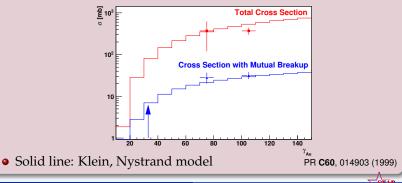
QCD Gribov-Glauber approach

Introduction Results on photonuclear vector meson production in Au  $\times$  Au collisions  $\rho$  photoproduction cross section Interference effects in  $\rho$  photoproduction  $\pi^+\pi^-\pi^+\pi^-$  photoproduction

### $\rho$ Production Cross Section

#### Energy dependence

 STAR measured *ρ* production cross section (total and with mutual nuclear breakup)

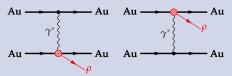

• At 
$$\sqrt{s_{NN}} = 130 \,\mathrm{GeV}$$

2 At 
$$\sqrt{s_{NN}} = 200 \,\text{GeV}$$

3 Ongoing analysis for  $\sqrt{s_{_{NN}}} = 62 \,\text{GeV}$ 

PRL 89, 272302 (2002)

PR C77, 034910 (2008)




### Interference Effects in $\rho$ Photoproduction

PRL 102, 112301 (2009)

#### Two-source interferometer

- Cannot distinguish γ<sup>\*</sup> source and target
- $\rho$  production occurs close to target nucleus ( $d \lesssim 1 \text{ fm}$ )



- Two indistinguishable processes related by parity transformation
- $\mathbb{P}(\rho) = -1 \implies \text{subtract amplitudes}$  $\sigma = \left| A(p_T, b, y) - A(p_T, b, -y) e^{i \vec{p}_T \cdot \vec{b}} \right|^2$
- At midrapidity  $A(p_T, b, y) \approx A(p_T, b, -y)$  $\implies \sigma(p_T, b, 0) = 2 |A(p_T, b, 0)|^2 \left[1 - \cos(\vec{p}_T \cdot \vec{b})\right]$
- System acts like two-slit interferometer with slit separation  $|\vec{b}|$

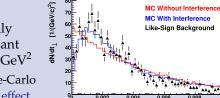
### Interference Effects in $\rho$ Photoproduction

#### PRL 102, 112301 (2009)

#### Two-source interferometer

- *ρ* production suppressed for
   *p<sub>T</sub>* ≤ *ħ*/⟨*b*⟩
- $t \approx p_T^2$ )-Spectrum roughly exponential with significant downturn for  $t < 0.0015 \,\text{GeV}^2$ 
  - Consistent with Monte-Carlo including interference effect




- Since βγcτ ≪ ⟨b⟩, produced ρ decay at two points well separated in space-time
  - Two amplitudes overlap and interfere only after decay
  - Interference must involve  $\pi^+\pi^-$  final state
  - Interference only possible for entangled nonlocal final state wave function that is not factorizable into separate  $\pi^{\pm}$  wave functions
  - Example of Einstein-Podolsky-Rosen paradox with continuous variables momentum and position

Raw minimum bias *t*-spectrum for  $|y| \in [0, 0.5]$ 

### Interference Effects in $\rho$ Photoproduction

#### Two-source interferometer

- *ρ* production suppressed for
   *p<sub>T</sub>* ≤ *ħ*/⟨*b*⟩
- $t(\approx p_T^2)$ -Spectrum roughly exponential with significant downturn for  $t < 0.0015 \,\text{GeV}^2$ 
  - Consistent with Monte-Carlo including interference effect



Since βγcτ ≪ ⟨b⟩, produced ρ decay at two points well separated in space-time

- Two amplitudes overlap and interfere only after decay
- Interference must involve  $\pi^+\pi^-$  final state
- Interference only possible for entangled nonlocal final state wave function that is not factorizable into separate  $\pi^{\pm}$  wave functions
- Example of Einstein-Podolsky-Rosen paradox with continuous variables momentum and position

t [(GeV/c)2]

### Interference Effects in p Photoproduction

PRL 102, 112301 (2009)

Measuring interference strength

• Fit *t*-spectrum with 
$$\frac{dN}{dt} = a e^{-kt} [1 + c (R(t) - 1)]$$

- *k* is slope parameter
- Ratio  $R(t) \equiv \frac{\text{MC } t\text{-spectrum with interference}}{\text{MC } t\text{-spectrum without interference}}$
- Fit parameter *c* measures strength of interference
  - c = 0 corresponds to no interference
  - c = 1 interference predicted by Klein-Nystrand model

PRL 84, 2330 (2000)

- Different median impact parameters b
  - Topology data (no neutron tag):  $\tilde{b} \approx 46 \text{ fm}$
  - Minimum bias data (neutron tag):  $\tilde{b} \approx 18 \, \text{fm}$ 
    - $\implies$  interference effects extend to larger  $p_T$
- Dependence of  $\rho$  production amplitudes on photon energy decreases interference effect at larger rapidities

### Interference Effects in p Photoproduction

PRL 102, 112301 (2009)

Measuring interference strength

• Fit *t*-spectrum with 
$$\frac{dN}{dt} = a e^{-kt} [1 + c (R(t) - 1)]$$

- *k* is slope parameter
- Ratio  $R(t) \equiv \frac{\text{MC } t \text{-spectrum with interference}}{\text{MC } t \text{-spectrum without interference}}$
- Fit parameter *c* measures strength of interference
  - c = 0 corresponds to no interference
  - c = 1 interference predicted by Klein-Nystrand model

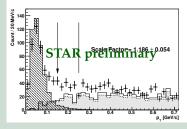
PRL 84, 2330 (2000)

- Different median impact parameters b
  - Topology data (no neutron tag):  $\tilde{b} \approx 46 \text{ fm}$
  - Minimum bias data (neutron tag):  $\tilde{b} \approx 18 \, \text{fm}$ 
    - $\implies$  interference effects extend to larger  $p_T$
- Dependence of  $\rho$  production amplitudes on photon energy decreases interference effect at larger rapidities

Measured spectral modification parameter

 $c = 87 \pm 5_{\text{stat.}} \pm 8_{\text{syst.}}$  %

Boris Grube


Photoproduction in Ultra-Peripheral Heavy Ion Collisions at

Introduction Results on photonuclear vector meson production in Au  $\times$  Au collisions  $\rho$  photoproduction cross section Interference effects in  $\rho$  photoproduction  $\pi^+\pi^-\pi^+\pi^-$  photoproduction

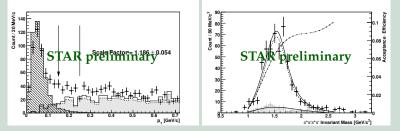
### $\pi^+\pi^-\pi^+\pi^-$ Production in Au imes Au @ $\sqrt{s_{_{NN}}}=$ 200 GeV

Coherent photonuclear production with mutual nuclear excitation

• Enhancement at low  $p_T$  due to coherent production



- Mass peak could be  $\rho(1450)$  and/or  $\rho(1700)$ 
  - Similar to peak seen in  $\gamma p$  experiments
- Fit with *s*-wave Breit-Wigner modified by Ross-Stodolsky factor


• 
$$f(m) = A \cdot \left(\frac{m_0}{m}\right)^n \cdot \frac{m_0^2 \Gamma_0^2}{(m_0^2 - m^2)^2 + m_0^2 \Gamma_0^2} + f_{BG}(m)$$

Introduction Results on photonuclear vector meson production in Au  $\times$  Au collisions  $\rho$  photoproduction cross section Interference effects in  $\rho$  photoproduction  $\pi^+\pi^-\pi^+\pi^-$  photoproduction

### $\pi^+\pi^-\pi^+\pi^-$ Production in Au imes Au @ $\sqrt{s_{_{NN}}}=$ 200 GeV

Coherent photonuclear production with mutual nuclear excitation

• Enhancement at low *p*<sub>T</sub> due to coherent production

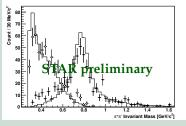


- Mass peak could be  $\rho(1450)$  and/or  $\rho(1700)$ 
  - Similar to peak seen in γp experiments
- Fit with s-wave Breit-Wigner modified by Ross-Stodolsky factor

• 
$$f(m) = A \cdot \left(\frac{m_0}{m}\right)^n \cdot \frac{m_0^2 \Gamma_0^2}{(m_0^2 - m^2)^2 + m_0^2 \Gamma_0^2} + f_{\text{BG}}(m)$$

•  $m_0 = 1540 \pm 40 \text{ MeV}/c^2$ ,  $\Gamma_0 = 570 \pm 60 \text{ MeV}$ 

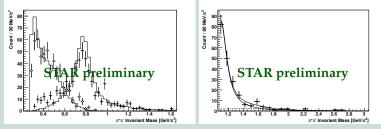
### $\pi^+\pi^-\pi^+\pi^-$ Production in Au imes Au @ $\sqrt{s_{_{NN}}}=$ 200 GeV


• Cross section ratio  $\frac{\sigma_{xnxn}^{\rm coh}[\pi^+\pi^-\pi^+\pi^-]}{\sigma_{xnxn}^{\rm coh}[\rho^0(770)]} = 13.4 \pm 0.8 \%$ 

Substructure: low mass pion pair accompanied by ρ<sup>0</sup>(770)
 Decay model in MC: ρ' → [ρ<sup>0</sup>(770) + f<sub>0</sub>(600)]<sub>s-wave</sub>

- No signal seen in  $\pi^+\pi^-$  channel
- Publication in preparation

### $\pi^+\pi^-\pi^+\pi^-$ Production in Au imes Au @ $\sqrt{s_{_{NN}}}=$ 200 GeV


- Cross section ratio  $\frac{\sigma_{xnxn}^{\text{coh}}[\pi^+\pi^-\pi^+\pi^-]}{\sigma_{xnxn}^{\text{coh}}[\rho^0(770)]} = 13.4 \pm 0.8 \%$
- Substructure: low mass pion pair accompanied by  $ho^0(770)$ 
  - Decay model in MC:  $\rho' \to [\rho^0(770) + f_0(600)]_{s-wave}$



- No signal seen in  $\pi^+\pi^-$  channel
- Publication in preparation

### $\pi^+\pi^-\pi^+\pi^-$ Production in Au imes Au @ $\sqrt{s_{_{NN}}}=$ 200 GeV

- Cross section ratio  $\frac{\sigma_{xn\,xn}^{\rm coh}[\pi^+\pi^-\pi^+\pi^-]}{\sigma_{xn\,xn}^{\rm coh}[\rho^0(770)]} = 13.4 \pm 0.8 \%$
- Substructure: low mass pion pair accompanied by  $\rho^0(770)$ 
  - Decay model in MC:  $\rho' \rightarrow [\rho^0(770) + f_0(600)]_{s-\text{wave}}$



- No signal seen in  $\pi^+\pi^-$  channel
- Publication in preparation

### Conclusions

#### Summary

#### • STAR measured photonuclear *ρ* production in UPCs

- Cross sections agree with theoretical models
- STAR sees interference effects in *ρ* production close to expected level
   PRL 102, 113201 (2009)
- Ongoing analyses:
  - $\rho$  production in d × Au @  $\sqrt{s_{NN}} = 200 \text{ GeV}$  and Au × Au @  $\sqrt{s_{NN}} = 62 \text{ GeV}$
  - Resonant  $\pi^+\pi^-\pi^+\pi^-$  production in Au × Au @  $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$

#### Outlook

- New STAR subsystems being commissioned right now:
  - Replacement of CTB by time-of-flight detector
    - Better trigger performance and improved particle ID
  - Data acquisition upgrade
    - TPC can be read out with O(1 kHz) at low dead-time

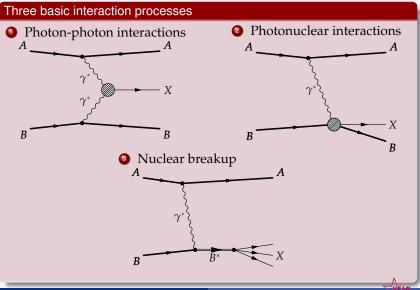
### Conclusions

#### Summary

- STAR measured photonuclear *ρ* production in UPCs
  - Cross sections agree with theoretical models
  - STAR sees interference effects in *ρ* production close to expected level
     PRL 102, 113201 (2009)
- Ongoing analyses:
  - $\rho$  production in d × Au @  $\sqrt{s_{NN}} = 200 \text{ GeV}$  and Au × Au @  $\sqrt{s_{NN}} = 62 \text{ GeV}$
  - Resonant  $\pi^+\pi^-\pi^+\pi^-$  production in Au × Au @  $\sqrt{s_{NN}} = 200 \text{ GeV}$

#### Outlook

- New STAR subsystems being commissioned right now:
  - Replacement of CTB by time-of-flight detector
    - Better trigger performance and improved particle ID
  - Data acquisition upgrade
    - TPC can be read out with  $\mathcal{O}(1 \text{ kHz})$  at low dead-time


### Outline



- Introduction
- Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions
- Other results

Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

### Ultra-Peripheral Relativistic Heavy Ion Collisions (UPC)



Boris Grube Photoproduction in Ultra-Peripheral Heavy Ion Collisions at

### Ultra-Peripheral Relativistic Heavy Ion Collisions (UPC)

UPC kinematics for RHIC Au  $\times$  Au @  $\sqrt{s_{_{\!N\!N}}}=200\,{\rm GeV}$  and LHC Pb  $\times$  Pb @  $\sqrt{s_{_{\!N\!N}}}=5500\,{\rm GeV}$ 

- Photons emitted coherently by whole nucleus
- Maximum photon energy in lab frame:  $\omega_{max} = \gamma_L \hbar c / R_A$  $\omega_{max} \approx 3 \text{ GeV} \text{ (RHIC)}, 80 \text{ GeV} \text{ (LHC)}$
- Photon-photon collisions:  $\sqrt{s_{\gamma\gamma}^{\text{max}}} = 2\gamma_L \hbar c / R_A$  $\sqrt{s_{\gamma\gamma}^{\text{max}}} \approx 6 \text{ GeV} \text{ (RHIC), 160 GeV (LHC)}$
- Photonuclear interactions:  $\sqrt{s_{\gamma N}^{\text{max}}} = \sqrt{2\omega_{\text{max}}\sqrt{s_{NN}}}$  $\sqrt{s_{\gamma N}^{\text{max}}} \approx 35 \,\text{GeV} \text{ (RHIC)}, 950 \,\text{GeV} \text{ (LHC)}$

Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

### The Relativistic Heavy Ion Collider (RHIC) at BNL



# Various particle species and collision energies

- Au + Au
  - $\sqrt{s_{NN}} = 19.6, 62.4, 130, \text{ and}$ 200 GeV
- Cu + Cu
  - $\sqrt{s_{_{NN}}} = 62.4$  and 200 GeV
- d + Au
  - $\sqrt{s_{\rm NN}} = 200\,{\rm GeV}$
- polarized p + p
  - $\sqrt{s_{_{NN}}} = 200$  and (future) 500 GeV

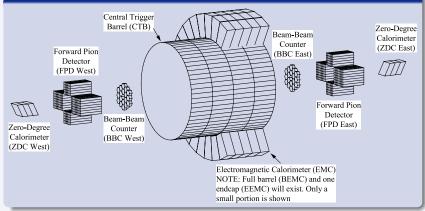
Boris Grube Photoproduction in Ultra-Peripheral Heavy Ion Collisions at

Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

### The STAR Experiment at RHIC

#### Solenoidal Tracker At RHIC (STAR)

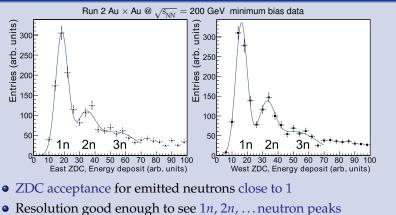



#### Big collaboration

- 533 scientists
- 52 institutes
- 12 countries

Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

### The STAR Experiment at RHIC


#### **Trigger detectors**



Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

### UPC Triggers — Neutron tagging

#### Measuring nuclear breakup neutrons in Zero Degree Calorimeter (ZDC)



- Allows to select different excited states
- Neutron tag selects smaller impact parameters

Introduction

## **UPC** Triggers

#### Other triggers used at STAR

#### Multi-prong trigger (CTB and ZDC)

- Coincident neutrons in both ZDCs
- Low CTB multiplicity
- Veto from large-tile BBCs

## J/ψ trigger (CTB, ZDC, and BEMC)

- Multi-prong trigger with additional calorimeter requirement
- BEMC subdivided into 6 sectors
- 2 high towers in non-neighboring BEMC sectors required

## Triggering and Data Selection

#### Main background contributions

- Beam-gas interactions reduced by
  - Requiring low track multiplicity
  - Limiting primary vertex position

## Peripheral hadronic interactions reduced by

- Requiring low track multiplicity
- Selecting low *p*<sub>T</sub>

#### Pile-up events reduced by

- Requiring low track multiplicity
- Limiting primary vertex position

## Osmic rays reduced by

- Limiting primary vertex position
- Minimum bias trigger: ZDC neutron tag
- Topology trigger: excluding events close to |y| = 0

## Triggering and Data Selection

#### Main background contributions

- Beam-gas interactions reduced by
  - Requiring low track multiplicity
  - Limiting primary vertex position

## Peripheral hadronic interactions reduced by

- Requiring low track multiplicity
- Selecting low *p*<sub>T</sub>
- Pile-up events reduced by
  - Requiring low track multiplicity
  - Limiting primary vertex position

## Osmic rays reduced by

- Limiting primary vertex position
- Minimum bias trigger: ZDC neutron tag
- Topology trigger: excluding events close to |y| = 0

## Triggering and Data Selection

#### Main background contributions

- Beam-gas interactions reduced by
  - Requiring low track multiplicity
  - Limiting primary vertex position
- Peripheral hadronic interactions reduced by
  - Requiring low track multiplicity
  - Selecting low *p*<sub>T</sub>
- Pile-up events reduced by
  - Requiring low track multiplicity
  - Limiting primary vertex position
- Cosmic rays reduced by
  - Limiting primary vertex position
  - Minimum bias trigger: ZDC neutron tag
  - Topology trigger: excluding events close to |y| = 0

## Triggering and Data Selection

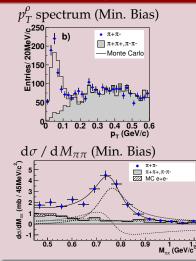
#### Main background contributions

- Beam-gas interactions reduced by
  - Requiring low track multiplicity
  - Limiting primary vertex position
- Peripheral hadronic interactions reduced by
  - Requiring low track multiplicity
  - Selecting low *p<sub>T</sub>*
- Pile-up events reduced by
  - Requiring low track multiplicity
  - Limiting primary vertex position
- Cosmic rays reduced by
  - Limiting primary vertex position
  - Minimum bias trigger: ZDC neutron tag
  - Topology trigger: excluding events close to |y| = 0

# Triggering and Data Selection

#### Main background contributions

- Beam-gas interactions reduced by
  - Requiring low track multiplicity
  - Limiting primary vertex position


## Peripheral hadronic interactions reduced by

- Requiring low track multiplicity
- Selecting low *p<sub>T</sub>*
- Pile-up events reduced by
  - Requiring low track multiplicity
  - Limiting primary vertex position
- Osmic rays reduced by
  - Limiting primary vertex position
  - Minimum bias trigger: ZDC neutron tag
  - Topology trigger: excluding events close to |y| = 0

Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

## $\rho$ Production Cross Section

## Run 1 Au imes Au @ $\sqrt{s_{_{NN}}}$ = 130 GeV data



# Rapidity distribution (Min. Bias)

• Total cross section:  $\sigma_{tot} = (460 \pm 220_{stat.} \pm 110_{sys.}) \text{ mb}$ PRL **89**, 272302 (2002)

0

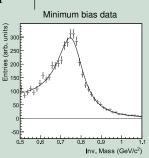
• Theoretical prediction:  $\sigma_{tot} = 350 \text{ mb}$ S. Klein *et al.*, PR **C60**, 014903 (1999)

Boris Grube Photoproduction in Ultra-Peripheral Heavy Ion Collisions at

50

-3 -2

#### PR C77, 034910 (2008)

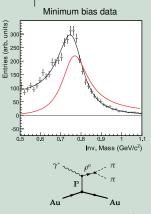

#### Fit function with 4 components

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

$$\mathbf{E}(M_{\mu\nu}) = \mathbf{E} - \frac{M_{\rho} \left[ M_{\pi\pi}^2 - 4m_{\pi}^2 \right]^{\frac{3}{2}}}{M_{\mu\nu}^2} \underbrace{\left[ \frac{M_{\mu\nu}}{M_{\mu\nu}} + \frac{M_{\mu\nu}}{M_{\mu\nu}} \right]^{\frac{3}{2}}}_{\mathrm{H}} \underbrace{\left[ \frac{M_{\mu\nu}}{M_{\mu\nu}} + \frac{M_{\mu\nu}}{M_{\mu\nu}} \right]^{\frac{3}{2}}_{\mathrm{H}} \underbrace{\left[ \frac{M_{\mu\nu}}{M_{\mu\nu}} +$$

with 
$$\Gamma(M_{\pi\pi}) \equiv \Gamma_{\rho} \frac{M_{\rho}}{M_{\pi\pi}} \left[ \frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2} \right]^2$$

- Relativistic Breit-Wigner function for *ρ* peak with amplitude *A*
- Constant direct π<sup>+</sup>π<sup>-</sup> production amplitude B
- Söding term for interference of the two
- 2nd order polynomial *f*<sub>BG</sub> describes background from like-sign pairs



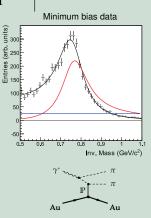

#### PR C77, 034910 (2008)

#### Fit function with 4 components

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$
with  $\Gamma(M_{\pi\pi}) \equiv \Gamma_{\rho} \frac{M_{\rho}}{M_{\pi\pi}} \left[ \frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2} \right]^{\frac{3}{2}} \underbrace{\overset{\text{grad}}{\underset{\text{grad}}{\text{grad}}} + B}_{\text{grad}}$ 

- Relativistic Breit-Wigner function for *ρ* peak with amplitude *A*
- Constant direct π<sup>+</sup>π<sup>-</sup> production amplitude B
- Söding term for interference of the two
- 2nd order polynomial *f*<sub>BG</sub> describes background from like-sign pairs




#### PR C77, 034910 (2008)

#### Fit function with 4 components

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + j$$
with  $\Gamma(M_{\pi\pi}) \equiv \Gamma_{\rho} \frac{M_{\rho}}{1 + iM_{\rho}\Gamma} \left[ \frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{2} \right]^{\frac{3}{2}} \frac{\widehat{g}}{\widehat{g}_{300}}$ 

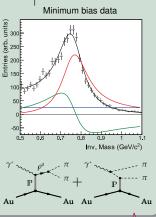
 $M_{\pi\pi} \mid M_{\rho}^2 - 4m_{\pi}^2 \mid$ 

- Relativistic Breit-Wigner function for *ρ* peak with amplitude *A*
- Constant direct π<sup>+</sup>π<sup>-</sup> production amplitude B
- Söding term for interference of the two
- 2nd order polynomial f<sub>BG</sub> describes background from like-sign pairs



BG

with


#### PR C77, 034910 (2008)

#### Fit function with 4 components

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

$$\Gamma(M_{\pi\pi}) \equiv \Gamma_{\rho} \frac{M_{\rho}}{M_{\pi\pi}} \left[ \frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2} \right]^{\frac{3}{2}} \xrightarrow{\text{G}}_{\frac{1}{2} \text{ sol}}$$

- Relativistic Breit-Wigner function for *ρ* peak with amplitude *A*
- Constant direct π<sup>+</sup>π<sup>-</sup> production amplitude B
- Söding term for interference of the two
- 2nd order polynomial f<sub>BG</sub> describes background from like-sign pairs



#### PR C77, 034910 (2008)

#### Fit function with 4 components

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

$$M_{\pi\pi} \left[ M_{\pi\pi}^2 - 4m^2 \right]^{\frac{3}{2}} \approx \frac{\mathrm{Minimum \ bias \ data}}{\mathrm{Minimum \ bias \ data}}$$

with 
$$\Gamma(M_{\pi\pi}) \equiv \Gamma_{\rho} \frac{M_{\rho}}{M_{\pi\pi}} \left[ \frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2} \right]^2 \stackrel{\text{(f)}}{\underset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{\text{(f)}}{\overset{(f)}{\overset{(f)}}{\overset{(f)}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset{(f)}}{\overset$$

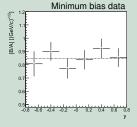
- Relativistic Breit-Wigner function for *ρ* peak with amplitude *A*
- Constant direct π<sup>+</sup>π<sup>-</sup> production amplitude B
- Söding term for interference of the two

Boris Grube

2nd order polynomial f<sub>BG</sub> describes background from like-sign pairs



Inv. Mass (GeV/c2)


Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions

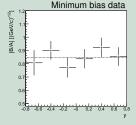
## Direct $\pi^+\pi^-$ vs. $\rho$ Production

Ratio of non-resonant to resonant  $\pi^+\pi^-$  production

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

- Amplitudes *A* and *B* are fit parameters
- *B*/*A* measure for ratio of non-resonant to resonant  $\pi^+\pi^-$  production
  - For Au  $\times$  Au @  $\sqrt{s_{NN}} = 200 \text{ GeV}$  :  $|B/A| = 0.89 \pm 0.08_{\text{stat.}} \pm 0.09_{\text{syst.}} \text{ GeV}^{-\frac{1}{2}}$
  - No dependence on angles or rapidity PR C77, 034910 (2008)

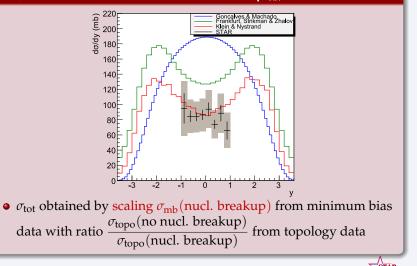



Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

## Direct $\pi^+\pi^-$ vs. $\rho$ Production

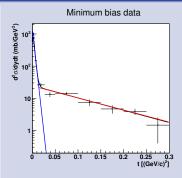
Ratio of non-resonant to resonant  $\pi^+\pi^-$  production

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$


- Amplitudes *A* and *B* are fit parameters
- *B*/*A* measure for ratio of non-resonant to resonant  $\pi^+\pi^-$  production
  - For Au × Au @  $\sqrt{s_{NN}} = 200 \text{ GeV}$ : |B/A| = 0.89 ± 0.08<sub>stat.</sub> ± 0.09<sub>syst.</sub> GeV<sup>-1/2</sup>
  - No dependence on angles or rapidity PR C77, 034910 (2008)
  - For Au × Au @  $\sqrt{s_{_{NN}}} = 130 \text{ GeV}$  :  $|B/A| = 0.81 \pm 0.08_{\text{stat.}} \pm 0.20_{\text{syst.}} \text{ GeV}^{-\frac{1}{2}}$ PRL **89**, 272302 (2002)
  - In agreement with ZEUS EPJ C2, 247 (1998)



Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results


## $\rho$ Production Cross Section

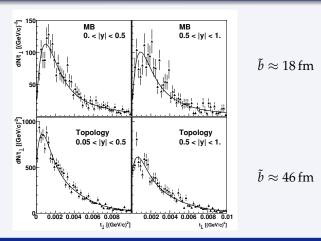
## Total $\rho$ production cross section for Au $\times$ Au @ $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$



## $\rho$ Production Cross Section

#### Coherent and incoherent production




- $t \approx p_T^2$ )-Spectrum fit by double-exponential form  $\frac{d\sigma}{dt} = a_{Au} e^{-b_{Au} t} + a_N e^{-b_N t}$
- Incoherent production slope  $b_N = 8.8 \pm 1.0 \,\text{GeV}^{-2}$
- Coherent production slope  $b_{\rm Au} = 388 \pm 24 \, {\rm GeV}^{-2}$ 
  - Related to hadronic radius of gold
- Ratio of incoherent to coherent production

$$\frac{\sigma_{\rm incoh}}{\sigma_{\rm coh}} = 29 \pm 3_{\rm stat.} \pm 8_{\rm syst.} \%$$

Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

## Interference Effects in $\rho$ Photoproduction

PRL 102, 112301 (2009)



Weighted average of spectral modification parameter

 $c=87\pm5_{stat.}\pm8_{syst.}~\%$ 

Boris Grube

Photoproduction in Ultra-Peripheral Heavy Ion Collisions at

Introduction Results on photonuclear ho production in Au imes Au collisions Other results

## Spin Structure of $\rho$ Production Amplitudes

Extraction of spin density matrix elements from  $\pi^+\pi^-$  angular distribution Schilling, Wolf NP **B61**, 381 (1973)

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d\cos\theta \ d\phi} = \frac{3}{4\pi} \left[ \frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04} - 1)\cos^2\theta - \sqrt{2} \operatorname{\Re e}[r_{10}^{04}] \sin 2\theta \ \cos\phi - r_{1-1}^{04} \sin^2\theta \ \cos 2\phi \right]$$

- $\rho$  production plane difficult to reconstruct
- Approximate production plane using beam direction
  - $\theta$  is polar angle between beam direction and  $\vec{p}_{\pi^+}$  in  $\rho$  RF
  - $\phi$  is angle between  $\rho$  decay and production plane (w.r.t. beam)
- Due to ambiguity in beam direction cannot measure Re[r<sub>10</sub><sup>04</sup>] (interference between helicity non-flip and single-flip)

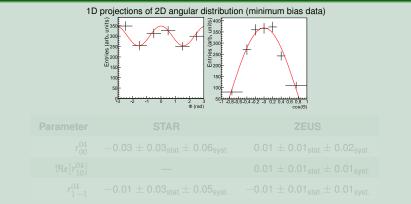
Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

## Spin Structure of $\rho$ Production Amplitudes

Extraction of spin density matrix elements from  $\pi^+\pi^-$  angular distribution

$$\frac{1}{\sigma} \frac{\mathrm{d}^2 \sigma}{\mathrm{d} \cos \theta \, \mathrm{d} \phi} = \frac{3}{4\pi} \left[ \frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04} - 1) \cos^2 \theta \right]$$

$$-\sqrt{2}\,\mathfrak{Re}[r_{10}^{04}]\,\sin 2\theta\,\cos\phi-r_{1-1}^{04}\,\sin^2\theta\,\cos 2\phi$$

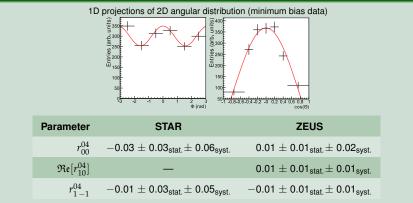

where 
$$r_{ik}^{04} \equiv \frac{\rho_{ik}^0 + \epsilon R \rho_{ik}^4}{1 + \epsilon R}$$
,  $R = \frac{\sigma_L}{\sigma_T}$  Schilling, Wolf NP **B61**, 381 (1973)

- $\theta$  is polar angle between beam direction and  $\vec{p}_{\pi^+}$  in  $\rho$  RF
- $\phi$  is angle between  $\rho$  decay and production plane (w.r.t. beam)
- $r_{00}^{04}$  represents probability that  $\lambda_{
  ho} = 0$  for  $\lambda_{\gamma^*} = \pm 1$
- $\Re e[r_{10}^{04}]$  related to interference between helicity non-flip and single-flip
- $r_{1-1}^{04}$  related to interference between helicity non-flip and double-flip

Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

## Spin Structure of $\rho$ Production Amplitudes

#### Spin density matrix elements from fit of 2D angular distributions




- Results similar to ZEUS measurements EPJ **c2**, 247 (1998)
- Spin density elements close to zero indicate *s*-channel helicity conservation

Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

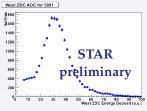
## Spin Structure of $\rho$ Production Amplitudes

#### Spin density matrix elements from fit of 2D angular distributions



- Results similar to ZEUS measurements EPJ **C2**, 247 (1998)
- Spin density elements close to zero indicate *s*-channel helicity conservation

## Photonuclear ho Prod. in d imes Au @ $\sqrt{s_{_{NN}}} =$ 200 GeV

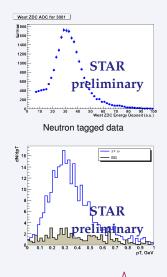

#### Asymmetric collision

- γ<sup>\*</sup> predominantly emitted by Au nucleus
- Topology data
  - Mainly  $\gamma^* d \rightarrow \rho d$
  - Coherent coupling to entire deuteron
- Topology trigger in coincidence with ZDC neutron signal from deuteron breakup
  - Mainly  $\gamma^* d \rightarrow \rho pn$
  - Coupling to individual nucleons: "incoherent"
- Smaller radii:  $R_{\rm d} \approx 2 \,{\rm fm}$ ,  $R_N \approx 0.7 \,{\rm fm}$ 
  - $\implies \rho$  has larger  $p_T$

# Photonuclear ho Prod. in d imes Au @ $\sqrt{s_{_{NN}}} =$ 200 GeV

#### Asymmetric collision

- γ<sup>\*</sup> predominantly emitted by Au nucleus
- Topology data
  - Mainly  $\gamma^* d \rightarrow \rho d$
  - Coherent coupling to entire deuteron
- Topology trigger in coincidence with ZDC neutron signal from deuteron breakup
  - Mainly  $\gamma^* d \rightarrow \rho pn$
  - Coupling to individual nucleons: "incoherent"
- Smaller radii:  $R_d \approx 2 \text{ fm}, R_N \approx 0.7 \text{ fm}$  $\implies \rho \text{ has larger } p_T$




Neutron tagged data

# Photonuclear ho Prod. in d imes Au @ $\sqrt{s_{_{NN}}} =$ 200 GeV

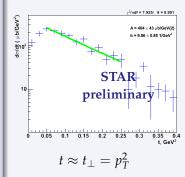
#### Asymmetric collision

- γ<sup>\*</sup> predominantly emitted by Au nucleus
- Topology data
  - Mainly  $\gamma^* d \rightarrow \rho d$
  - Coherent coupling to entire deuteron
- Topology trigger in coincidence with ZDC neutron signal from deuteron breakup
  - Mainly  $\gamma^* d \rightarrow \rho pn$
  - Coupling to individual nucleons: "incoherent"
- Smaller radii:  $R_d \approx 2 \text{ fm}, R_N \approx 0.7 \text{ fm}$  $\implies \rho \text{ has larger } p_T$



Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

# Photonuclear $\rho$ Prod. in d $\times$ Au @ $\sqrt{s_{_{NN}}} = 200 \,\text{GeV}$

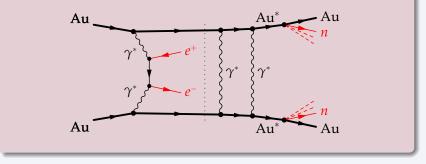

#### t-spectrum for d-breakup ("incoherent")

- Exponential fit function:  $dN/dt = a e^{-kt}$
- Slope parameter
  - $k = 9.06 \pm 0.85_{\text{stat.}} \,\text{GeV}^{-2}$ 
    - Related to nucleon form factor
    - Similar to results from Au × Au @  $\sqrt{s_{NN}} = 200 \text{ GeV}$ :  $k = 8.8 \pm 1.0_{\text{stat.}} \text{ GeV}^{-2}$

PR C77, 034910 (2008)

- Compatible with ZEUS  $k = 10.9 \pm 0.3_{\text{stat.}-0.5} \text{ syst.} \text{ GeV}^{-2}$ EPJ **C2**, 247 (1998)
- Downturn at low *t* 
  - Not enough energy for d dissociation
  - Also seen in low-energy γd (SLAC
     4.3 GeV Eisenberg *et al.*, NP B104, 61 (1976))






## Ultra-Peripheral Heavy Ion Collisions (UPC) at STAR

#### UPC processes measured at STAR (cont.)

**O** Photon-photon interactions with mutual nuclear breakup

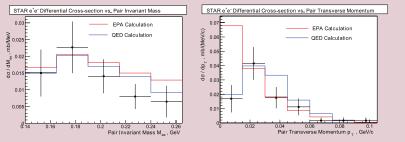
•  $e^+e^-$ -pair production in Au × Au @  $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ 



# $e^+e^-$ -Pair Production in Au imes Au @ $\sqrt{s_{_{NN}}}=200\,{ m GeV}$

## Strong electromagnetic fields

- $Z\alpha \approx 0.6 \implies$  conventional perturbative calculations may be questionable
- Enrich collisions at small impact parameters (= stronger fields) by requiring mutual Coulomb excitation  $2R_A < b \lesssim 30$  fm


## Run 2 minimum bias data

- Challenging measurement due to small acceptance
- Most  $e^{\pm}$  produced at very low  $p_T$ 
  - Reconstructible only at half solenoid field of 0.25 T
- $e^{\pm}$  identification via dE/dx in TPC gas
  - Clean sample with PID efficiency close to 1 and minimum contaminations for  $p_{e^{\pm}} < 130$  MeV/c
- Limited statistics: 52 events

Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

# $e^+e^-$ -Pair Production in Au imes Au @ $\sqrt{s_{_{NN}}} = 200 \,\mathrm{GeV}$

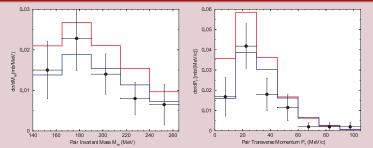
## Differential cross sections $d\sigma/dM_{e^+e^-}$ and $d\sigma/dp_T^{e^+e^+}$



- Data compared with 2 models:
  - EPA: equivalent photon approach

PR C70, 031902 (2004)

- Treats γ<sup>\*</sup> as real photons
- Fails for lowest  $p_T$  bin ( $p_T < 15 \text{ MeV/}c$ )


Boris Grube

- QED: lowest order QED calculation with simplified model for Coulomb excitation (GDR only) Henken *et al.*, PR **C69**, 054902 (2004)
  - Describes data well

Introduction Results on photonuclear  $\rho$  production in Au  $\times$  Au collisions Other results

# $e^+e^-$ -Pair Production in Au imes Au @ $\sqrt{s_{_{NN}}} = 200 \,\mathrm{GeV}$

## New QED calculation with realistic phenomenological treatment of Coulomb excitation Baltz, PRL 100, 062302 (2008)



#### Lowest order QED

Overshoots data

 $\sigma_{\rm QED} = 2.34 \,\mathrm{mb} \,\mathrm{vs.} \; \sigma_{\rm exp} = 1.6 \pm 0.2_{\rm stat.} \pm 0.3_{\rm syst.} \,\mathrm{mb}$ 

- Including higher order corrections
  - Good agreement with data,  $\sigma_{\text{QED}} = 1.67 \text{ mb}$

## Star Upgrades for 2009+

#### Time of Flight (ToF) Detector

- Replaces central trigger barrel
- Multi-gap resistive plate chambers (MRPC) using ALICE technology
- 23 000 channels (6 slats × 32 plates × 120 trays)
- Full coverage of TPC acceptance ( $2\pi$  in  $\phi$ ,  $|\eta| < 1$ )
- Intrinsic time resolution  $\approx 85 \, \mathrm{ps}$

#### Upgrade of data acquisition (DAQ)

- New TPC front-end electronics based on ALICE's ALTRO chip
- Will permit trigger rates  $O(1 \text{ kHz}) \implies DAQ1000$