Photon physics at CMS

Jonathan Hollar Lawrence Livermore National Laboratory for the CMS Collaboration

$\gamma\gamma \rightarrow l^+l^-$ interactions

- QED process elastic (protons stay intact) crosssection is known to ~1%
- Theoretically less clean inelastic (protondissociation) events are treated as background

- At startup/low-luminosity
 - Candidate for aboslute luminosity normalization
 - Low pT lepton ID studies
 - Reference for other "exclusive" analyses

- At high-luminosity
 - Alignment sample for forward proton detectors (FP420 etc.)
 - "Standard candle" for BSM searches in very high energy $\gamma\gamma$ interactions: $(\gamma\gamma \rightarrow \tilde{l}^+\tilde{l}, \gamma\gamma \rightarrow H^{++}H^{--}, \gamma\gamma \rightarrow W^+W^-$ couplings, $\gamma\gamma \rightarrow MM$, $\gamma\gamma \rightarrow G \rightarrow l^+l^-$, $\gamma\gamma \rightarrow \gamma\gamma$, etc.)

Vector-meson photoproduction

CMS

- Cross-sections have been measured at HERA with W_{vis}~100-200GeV
 - At CMS, W_{vis}~550GeV (14TeV)
- Also possible to study Upsilon "t" and η distributions

- At CMS, low-mass mesons are difficult to trigger on, but Y is accessible in the dilepton channel
 - Probe of generalized parton distributions

Wvis (γp CM energy)

Samples and I⁺I⁻ selection

- Full simulation study for $\sqrt{s}=14$ TeV pp collisions using LPAIR and STARLIGHT (J. Nystrand) for signal, Pythia for backgrounds
 - Standard startup 3 GeV dimuon trigger, 6 GeV dielectron trigger
 - Offline analysis: require leptons be back-to-back ($|\Delta \phi| > 2.9$ rad) and balanced in p_T ($|\Delta p_T| < 2.0$ GeV)

- With low pileup/beam backgrounds, signal events are "exclusive"
- Require no significant extra activity in calorimeter/tracker volume
 - < 5 extra towers with E > 5 GeV in the hadronic calorimeter $(|\eta| < 5)$
 - < 3 tracks in the event ($|\eta|$ < 2.4)
- Vetoes on activity in the forward CASTOR (5.2 < η < 6.6) and Zero Degree Calorimeter (|η| > 8.1) detectors to further suppress the inelastic backgrounds

Background estimation

- Residual inclusive backgrounds can be estimated from data
 - Apply all selections except the N (towers) cut, and extrapolate from the sideband into the signal region
- In MC, this gives an estimate of ~40 events
 - Factor of ~5 smaller than the inelastic background

Final samples

- For 100pb⁻¹, expect ~700 elastic γγ→μμ events, over a background of ~200 inelastic events (~600 without CASTOR/ZDC vetos)
- Several hundred $\gamma p \rightarrow \Upsilon \rightarrow \mu \mu$ events

- ~70 elastic γγ→e⁺e⁻ events with inelastic background of ~30 (~80 without CASTOR/ZDC)
 - Without improvements to electron triggers, no sensitivity to the Υ→ee mass region

Luminosity prospects

- Theory uncertainties on the elastic $\gamma\gamma \rightarrow \mu\mu$ cross-section are $\approx 1\%$
- For I00pb⁻¹ at I4TeV, √N/N ≈ 4% after all cuts
 - Non-zero background, but signal can still be statistically separated using $\Delta \phi$ and Δp_T shapes
- Depends on controlling experimental systematics (trigger efficiency, background subtraction, etc.)
- For comparison of luminosity measurements at the LHC, see arXiv:0903.3861

Upsilon region

- After all selections, fit the invariant mass spectrum in the region 8-12 GeV
- First 3 Upsilon resonances should be clearly visible above QED continuum
 - Not included here: $X_b \rightarrow \Upsilon \gamma$

Sufficient statistics to study the "t" distribution - approximated by the measured pT^2 of the Upsilon

 $b(reco p_T^2) = 3.82 \pm 0.17 \text{ GeV}^2$ $b(true t) = 4.03 \pm 0.04 \text{ GeV}^2$

Heavy lons

U

- "Ultraperipheral" γγ and γA interactions are a major part of the heavy ion physics program in CMS
- Lower energy than pp collisions, but much larger cross-sections (Z⁴ enhancement for γγ, Z² enhancement for γA)
 - e⁺e⁻ channel accessible due to low instantaneous luminosity and relatively "open" triggers

- γA: Upsilon photoproduction (study of nuclear PDF's)
- $\gamma\gamma$: Test of higher-order QED effects (Z $\alpha \approx 0.6$)

Heavy Ion (PbPb) results

- Full simulation study for $\sqrt{s}=5.5$ TeV *PbPb* collisions, using STARLIGHT Monte Carlo
- Trigger on events with a μ⁺μ⁻ or e⁺e⁻ pair identified in CMS, no activity in the forward hadronic calorimeter (3<|η|< 5), and a neutron detected in the ZDC
- For 0.5nb⁻¹, expect ~180 γPb→Y→μμ events, ~220 γPb→Y→ee events (STARLIGHT cross-sections)
- Continuum background subtracted using like-sign dilepton sample

- With 100pb⁻¹ of pp collisions at at 14 TeV, CMS expects to trigger on and reconstruct several hundred elastic $\gamma\gamma \rightarrow \mu\mu$ and $\gamma p \rightarrow \gamma p \rightarrow \mu\mu p$ events
 - Plus a sample of $\gamma\gamma \rightarrow ee$ events
 - With minimal pileup, these can be cleanly separated from the dominant inelastic backgrounds
- With < Inb⁻¹ of *PbPb* collisions at 5.5 TeV, CMS can trigger and reconstruct several hundred $\gamma Pb \rightarrow \Upsilon \rightarrow \mu\mu$ and $\gamma Pb \rightarrow \Upsilon \rightarrow ee$ events
- γγ and γp interactions will play a major role in any future forward detector projects in CMS - both for alignment and BSM searches (see talk by K. Piotrzkowski Tuesday)

- "Baseline" CMS forward hadronic calorimeter (HF) extends to $|\eta| < 5$
- Castor: quartz-tungsten sampling calorimeter
 - ~14 m from IP, covers $5.2 < |\eta| < 6.6$ (one side only at startup)
- ZDC: quartz-tungsten sampling calorimeter
 - ~I40 m from IP

CMS

