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The eikonal model must be denoted as strongly preferable for the analysis of elastic high-
energy hadron collisions. The given approach allows to derive corresponding impact pa-
rameter profiles that characterise important physical features of nucleon collisions, e.g.,
the range of different forces. The contemporary phenomenological analysis of experimen-
tal data is, however, not able to determine these profiles unambiguously, i.e., it cannot give
the answer whether the elastic hadron collisions are more central or more peripheral than
the inelastic ones. However, in the collisions of mass objects (like protons) the peripheral
behaviour of elastic collisions should be preferred.

1 Coulomb-Hadronic Interference

The first attempt to determine the complete elastic scattering amplitude F C+N(s, t) for high
energy collisions of charged nucleons has been made by Bethe [1]:

F C+N(s, t) = F C(s, t)eiαΨ(s,t) + F N(s, t) (1)

where F C(s, t) is Coulomb amplitude (known from QED), F N (s, t) - elastic hadronic amplitude,
αΨ(s, t) - real relative phase between Coulomb and hadronic scattering and α = 1/137.036 is
the fine structure constant. This relative phase has been specified by West and Yennie [2] using
the Feynman diagram technique (one photon exchange) as

ΨWY (s, t) = − ln
−s

t
−

∫ 0

−4p2

dt′

|t′ − t|

[

1 − F N (s, t′)

F N (s, t)

]

; (2)

p representing the value of the incident momentum in the centre-of-momentum system. By
their construction (see Eq. (2), the phase ΨWY (s, t) is to be real.

However, it has been shown in Ref. [3] that this requirement can be fulfilled only provided
the phase of the elastic hadronic amplitude ζN (s, t) defined in our case as

F N (s, t) = i|F N (s, t)|e−iζN (s,t), (3)

is t independent at all kinematically allowed values of t. Rigorous proof has been given for
|ζN (s, t)| < π, which is fulfilled practically in all standard phenomenological models leading to
the central distribution of elastic processes in impact parameter space. It is not yet clear if it
holds also for |ζN (s, t)| < 2π corresponding to peripheral behaviour; see Fig. 1 where both the



types of phase t dependences are represented. The corresponding t dependences of imaginary
parts of complex relative phases αΨWY (s, t) are shown in Fig. 2.

Figure 1: t dependences of the hadronic
phases ζN (s, t) leading to the central and
peripheral behaviours of elastic pp scatter-
ing.

Figure 2: t dependences of imaginary parts
of the complex WY phases αΨWY (s, t) cor-
responding to hadronic phases from Fig. 1.

There is, however, no reason why the elastic hadronic phase should be independent of t
variable at all measured values of t. Thus the other approach different from the West and
Yennie formalism and based on the eikonal approach should be preferred - see, e.g., Ref. [4].
In such a case the complete elastic scattering amplitude F C+N (s, t) is related to the complete
eikonal δC+N (s, b) with the help of Fourier-Bessel (FB) transformation

F C+N (s, q2 = −t) =
s

4πi

∫

Ωb

d2bei~q.~b
[

e2iδC+N (s,b) − 1
]

, (4)

where Ωb is the two-dimensional Euclidean space of the impact parameter ~b. Mathematically
consistent use of FB transformation requires, of course, the existence of reverse transformation.
However, at finite energies the amplitude F C+N (s, t) is defined in a finite region of t only. Thus
the consistent application of formula (4) requires to take into account also the values of elastic
amplitude from unphysical region where the elastic hadronic amplitude is not defined; for details
see Refs. [5]. This issue has been discussed by Islam [6] who has shown that the problem may
be solved in a unique way by continuing analytically the elastic hadronic amplitude F N (s, t)
from physical to unphysical region of t ; see also Ref. [8].

The common influence of both the Coulomb and elastic hadronic scattering then can be
described by complete eikonal which is formed by the sum of both the Coulomb δC(s, b) and
hadronic δN (s, b) eikonals. Then the complete amplitude (valid at any s and t) can be finally
written [4] as

F C+N (s, t) = ±αs

t
f1(t)f2(t) + F N (s, t) [1 ∓ iαG(s, t)] , (5)



where
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and

I(t, t′) =

2π
∫

0

dΦ′′
f1(t

′′)f2(t
′′)

t′′
, t′′ = t + t′ + 2

√
tt′ cosΦ′′. (7)

Here the two form factors f1(t) and f2(t) reflect the spatial structure of colliding nucleons and
should describe it in a sufficiently broad interval of t. As the Coulomb amplitude F C(s, t) is
known from QED the complete amplitude is determined practically by the t dependence of the
hadronic amplitude F N (s, t).

2 Impact Parameter Picture of Elastic Nucleon

Scattering

As it has been already mentioned the mathematically consistent use of FB transformation in-
troducing the impact parameter representation hel(s, b) of elastic scattering amplitude F N (s, t)
requires its definition also in the unphysical region of t, i.e., for t < tmin = −s + 4m2 (m being
the nucleon mass). The function hel(s, b) must be, therefore, subdivided into two parts [5, 6]

hel(s, b) = h1(s, b) + h2(s, b) = (8)

=
1

4p
√

s

0
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tmin

dt F N (s, t) J0(b
√
−t) +

1

4p
√
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∫

−∞
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√
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Similar expressions can be obtained also for the impact parameter representation ginel(s, b) of
the inelastic overlap function Ginel(s, t) introduced in Ref. [7].

The unitarity equation in the impact parameter space can be then written as [5, 6]

=h1(s, b) = |h1(s, b)|2 + g1(s, b) + K(s, b) (9)

where the correlation function K(s, b) is very small compared to the other functions appearing
in Eq. (9) [8].

The total cross section and integrated elastic and inelastic cross sections then equal to

σtot(s) = 8π

∞
∫

0

bdb =h1(s, b); σel(s) = 8π

∞
∫

0

bdb |h1(s, b)|2; σinel(s) = 8π

∞
∫

0

bdb g1(s, b). (10)

Eqs. (10) are valid provided

∞
∫

0

bdb =h2(s, b) = 0,

∞
∫

0

bdb g2(s, b) = 0. (11)



The functions =h1(s, b), g1(s, b) and |h1(s, b)|2 represent then the impact parameter profiles;
they describe the density of interactions between two colliding nucleons in dependence on their
mutual distance. The first two oscillate at grater values of b, but their mean squared values
characterising the mean ranges of corresponding forces acting between the colliding particles
can be established directly from the elastic hadronic amplitude F N (s, t) [9]. For the mean
squared value of elastic impact parameter it has been derived

〈b2(s)〉el = 4
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∫
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dt |t|
(

d
dt
|F N (s, t)|

)2

0
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dt |F N (s, t)|2
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0
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)2

0
∫

tmin
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. (12)

Similarly the total and inelastic mean squared values equal to

〈b2(s)〉tot = 2B(s, 0); 〈b2(s)〉inel =
σtot(s)

σinel(s)
〈b2(s)〉tot − σel(s)

σinel(s)
〈b2(s)〉el. (13)

Here the diffractive slope is defined as

B(s, t) =
d

dt

[

ln
dσN

dt

]

=
2

|F N (s, t)|
d

dt
|F N (s, t)|. (14)

3 Impact Parameter Profiles for pp Scattering at 53 GeV

Basic results concerning the analysis of pp elastic scattering data at energy of 53 GeV at the
ISR [10] based on the eikonal approach have been published in Ref. [4]. Here we will mention
only the results related to the impact parameter profiles.

In the quoted paper we have used the formulas (5)-(7) for the complete elastic scattering
amplitude F C+N (s, t) generating the differential cross section

dσel

dt
=

π

sp2
|F C+N (s, t)|2. (15)

The elastic hadronic amplitude, i.e., its modulus and phase defined in Eq. (3), has been conve-
niently parameterised in order to describe the pp elastic scattering as central as well as peripheral
process. While the t dependence of the modulus can be almost unambiguously determined from
the data the phase can be only partially constrained. Both the possible alternatives (central
and peripheral) have been presented in Ref. [4]. The t dependences of the corresponding shapes
of the hadronic phase ζN (s, t) are shown in Fig. 1.

Once the elastic hadronic amplitude F N (s, t) has been specified it has been possible to
determine corresponding impact parameter profiles together with their statistical errors with
the help of FB transformation. And it has been also possible to determine the RMS values of
the total, elastic and inelastic profiles with the help of Eqs. (12) and (13) for the central as well
as the peripheral pictures of elastic pp scattering. Their shapes corresponding to peripheral
behaviour are shown in Fig. 3 (for the central case see Ref. [3]); all RMS values are included
in Table 1. In the central picture the elastic RMS is much lower than the inelastic one. This
result agrees with the result of Miettinen [11]. It means that the protons in ‘head-on’ collisions
should be rather transparent. In the peripheral case it is the second term in Eq. (12) that



Figure 3: Oscillating peripheral profiles of
elastic pp scattering at 53 GeV.

Figure 4: Positive peripheral profiles of
elastic pp scattering at 53 GeV.

gives the significant contribution to the elastic RMS value. Some profiles corresponding to the
peripheral case exhibit greater oscillations at higher impact parameter values b. However, the
oscillations can be removed as it will be shown in Ref. [8]. It will be briefly described in the
following.

It is necessary to construct actual (non-negative) pp profiles which correspond to the values
of RMS derived with the help of Eqs. (12) and (13). The way how to do it is described in
Refs. [8, 9]. It consists in adding an real function c(s, b) to the both sides of the unitarity
equation (9). All dynamical characteristics corresponding to elastic hadron scattering will be
preserved if the function c(s, b) appearing in Eqs. (17) fulfills some additional conditions.

Unitarity condition (9) may be then expressed as

htot(s, b) = |h1(s, b)|2 + ginel(s, b) (16)

where
htot(s, b) = =h1(s, b) + c(s, b), ginel(s, b) = g1(s, b) + K(s, b) + c(s, b) (17)

are non-negative functions for all b. The function htot(s, b) must be positively semidefinite (and
monotony decreasing function) at all values of b. The oscillating function c(s, b) is required
to cancel the oscillations from the total and inelastic profiles. The elastic peripheral profile
|h1(s, b)|2 will remain unchanged. And integrated inelastic cross section is preserved if the
function c(s, b) fulfills the conditions

∞
∫

0

b db c(s, b) = 0;

∞
∫

0

b3 db c(s, b) = 0. (18)

These two conditions represent the integral conditions limiting the shape of the function c(s, b).
According to Islam’s approach [6] this function may be identified with the =h2(s, b) for which
the conditions (18) are to be required. However, in the standard approach the function c(s, b)
can be hardly determined analytically. The best way at the present seems to specify it in a
numerical way as it will be illustrated in the following. It may be expected that the total profile



Table 1: Root-mean-squares of impact parameters for pp collisions at 53 GeV.

elastic profile
√

< b2 >tot

√
< b2 >el

√
< b2 >inel

modulus phase sum
[fm] [fm] [fm] [fm] [fm]

peripheral 1.033 0.676 1.671 1.803 0.772

central 1.028 0.679 ∼ 0. 0.679 1.087

entering into modified unitarity condition (16) should be approximately of Gaussian type with
the values that may be characterised by integral cross sections and by RMS values shown in
Table 1. The elastic profile will remain unchanged. Under these assumptions the total profile
shape can be defined (the s dependence being dropped) as htot(b) = ae−βb2 . Using formulas
3.461 from Ref. [13] the corresponding integrals needed for calculation of the total cross section
and total mean squared value can be analytically determined as

∞
∫

0

b db a e−βb2 =
a

2β
,

∞
∫

0

b3 db a e−βb2 =
a

2β2
(19)

and the values of the constants a and β can be determined from experimentally established
values. For the peripheral case of elastic pp scattering at energy of 53 GeV their values are:
a = 0.324 and β = 0.946. The b dependence of the auxiliary function c(s, b) is then determined
with the help of the first equation from (17) where =h1(s, b) is taken from experimental analysis.
And the second equation determines then the shape of the inelastic profile.

Knowing the shapes of the total and inelastic profiles together with the b dependence of
the auxiliary function c(s, b) the values of all the integrated cross sections and of all the mean
squares can be verified numerically as can be seen from the Table 2. The new values are
practically quite comparable with the original ones. Also the values of the integrals of function
c(s, b) (see Eqs. (18)) only slightly different from zero are shown in Table 2. The modified
profiles are exhibited in Fig. 4. The new total and inelastic profiles are central while the elastic
profile remains unchanged and is peripheral.

4 Conclusion

Some results concerning elastic nucleon collisions at high energies and based on the validity of
optical theorem have been summarised; the eikonal model has been applied to. The approach
suitable for the case of finite energies has been presented. It has been shown that elastic
processes may be interpreted as peripheral.



Table 2: The values of integrated cross sections and of the total, elastic and inelastic RMS.

Quantity Original values New values

σtot [mb] 42.864 42.872
σel [mb] 7.479 7.479√

< b2 >tot [fm] 1.0 1.028√
< b2 >el [fm] 1.803 1.803√

< b2 >inel [fm] 0.772 0.772

∞
∫

0

bdb c(s, b) [fm2] - 0.029

∞
∫

0

b3db c(s, b) [fm4] - 0.097

References

[1] H. Bethe, Ann. Phys. 3 190 (1958)

[2] G.B. West and D.R. Yennie, Phys. Rev. 172 1413 (1968)
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