

Finward Experiments at 1 HC

 how LHC can contribute to Cosmic Ray PhysicsUniversity and \mathbb{N} NN Catania
\times Physics Motivations
\times Forward Experiments
\times Physics performances

LUCID

EDS'09, CERN 29 Jun-3 July 2009

Forward Experiments at LHC
EDS'09, CERN 29 Jun - 3 July 2009

INEN The Cosmic Ray Spectra Difference in the energy scale between different experiments???

AGASASystematics
Total
$\pm 18 \%$
Hadron interaction
(QGSJET,SIBYLD) ~10\%
(Takeda et al., 2003)

Auger $\times 1.2$

Forward ExperimentsatLHC
Alessía Tricomi EDS'09, CEN 29 Jun - 3 July 2009

The depth of the maximum of the shower $X_{\text {max }}$ in the atmosphere depends on energy and type of the primary particle.

Differenthadronic

 interaction models give different answers about the composition of HECR.Alessía Tricomi
University\&INFNCatania

$\lg (\mathrm{E} / \mathrm{eV})$

Forward ExperimentsatLHC
EDS'09, CERN 29 Jun - 3 July 2009

Anisotropy would favor proton primaries (AGN correlation)

IN EN Modelling Cosmic Rays at LHC

$\operatorname{INFN}^{\text {D }}$ Development of atmospheric showers

Determination of Σ and mass of cosmic rays depends on description of primary $U H E$ RCD $(p+\mathrm{N}, \mathrm{O}$ Fe$+\mathrm{N}, \mathrm{O})$ interaction Hadronic MC's need tuning with data
The dominant contribution to the energy flux is in the very forward region ($\theta \approx 0$)
In this forward region the highest energy avail measure bents of π° cross section done by $(l$ $\left(E=10^{14} e V, y=5 \div 7\right)$

pomade r in EDS'09,CERN29 Jun - 3
 $\sqrt{s}=14 \mathrm{TeV} \Rightarrow E_{l a b}=10^{17}$ aV
ineN What acceleratorexperíment can do? \rightarrow Key parameter's

- Total (inelastic) cross section
- Ellasticity / Inelasticity
$-420 \mathrm{~m}$

420

- Secondary distribution ($E, P_{T}, \boldsymbol{\theta}, \boldsymbol{\eta}, X_{F}$)
$>$ Technique of the forward measurements

Alessía Tricomi
University\& INFNCatanía

Forward Experiments at LHC
EDS'09, CERN 29 Jun - 3 July 2009

Neutral particles

Neutral particles

Install detectors inside the beam pipe Challenging but ideal for charged particle

 multiplicity \& energy flow accessible overlarge $\boldsymbol{\eta}$ range
$\operatorname{INFN}^{\text {NEN }}$ Pseudo rapidítyegerage at LHC

Particle productionat LHC over $\Delta \eta \mathrm{E} \pm 10$ All phase space covered thanks to dedicated forward detectors!

INFN IP:ATLAS ferward detector

LUCID (Cerenkov Tubes, 17 m):
Cerenkovhits over $5.4<|\boldsymbol{\eta}|<6.1$
ZDC (W/Q-fibercalo, 140m):
Neutralcalorimetry over $|\boldsymbol{\eta}|>8.3 \mid$
ALPIHA(Sci-FiRPs):
Protontaggers at $\pm 240 \mathrm{~m}$
FP220,FP420 (Sí trackers, timing):
Proton tracking at $\pm 220,420 \mathrm{~m}$
Alessia Tricomi Forward Experimer
University\& INFNCatania EDS'09,CERN29 jun - 3 July 2009 Installed at $\pm 140 \mathrm{~m}$ on both side of $\mathbb{P} \mid$ in TAN region

4 pairs of silicon microstrip layer's ($6,12,30,42$ r.l.) for tracking purpose (X and Y directions)

2 towers 24 cm long stacked on their edges and offset from one another
Lower: $2.5 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ Upper: $3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm}$

INCOMING NEUTRA PARTICLE BEAM

- Total energy flow, wide aperture, high energy resiflution for hadrons, (proton measurement only By ALPC Z ZDC)

NeW ëro Degree Calorimeters: \square
Cf: same η-coverage as other 7 D C but fully

- dedicated experiment to HE CR Pligsics

Gamma Energy Spectrum of 20 mm square at Beam Center

Original n energy

Neutron Energy Distributions

30% energy resolution

Neutron Energy Spectrum

of 20 mm Calorimeter at beam center

Forward Experiments at LHC
EDS'09, CERN 29 Jun - 3 July 2009

INFN New Models

Drescher, Physical Review D77, 056003 (2008)

DdE, R.Engel, T.McCauley, T.Pierog: arXiv:0806.0944 [astro-ph]

Dominated by Soft QCD: underlying events, multiparton interactions, fragmentations

Alessía Tricomi
University\& INFNCatania

Forward Experiments at LHC
EDS'09, CERN 29 Jun - 3 July 2009

DdE, R.Engel, T.McCauley, T.Pierog: arXiv:0806.0944 [astro-ph]
Forward Experimentsat LHC
EDS'09, CERN 29 Jun-3 July 2009
onclusionseand plans
Compilation of EAS data is affected by the uncertanties of hadron interaction models.
LHC fwd experiments will provide crucial damion of hadron interaction for CR study covering the whole phase space formers

Several detectors already installed
LHCF ready for data taking already during LHC commissioning We need only to wait LHC restart! g to answer all our questions help EAS experiments to et their data

Thanks to ALICE, ATLAS, CMS, LHCb, LHCf,TOTEM Collaborations for usefulmaterial In particular, I wish to thank
O. Adriani, K. Eggert, D. D'Enterria, P. Grafstrom, M. Grothe, S. White

Alessia Tricomi
University\& INFN Catanía

PARTICLE BEAM
-

Forward Experimentsat LHC
EDS'09, CERN 29 Jun -3 July 2009

Back-up slides

Alessia Tricomi Universíty\& INFN Catanía

Forward Experiments at LHC EDS'09, CERN 29 Jun - 3 July 2009

Cosmí Ray Eemposition

Kascade Results

Alessía Tricomi
University\&INFNCatania

brimarv energv E /GeV]

Forward Experiments at LHC
EDS'09, CERN 29 Jun-3 July 2009

- extends calorimetric coverage of CMS to $5.2<\boldsymbol{\eta}<6.6$
- signal collection through Čerenkov photons transmitted to PMTs through aircore lightguides
- W absorber \& quartz plates sandwich,
- electromagnetic and hadronic sections
- 140 m from interaction point in TAN absorber
- Tungsten/quartz Čerenkov calorimeter with separate e.m. and had. Sections
- Acceptance for neutrals ($\mathbf{Y}, \boldsymbol{\pi}^{\mathbf{0}}, \mathbf{n}$) from $\eta>8.1,100 \%$ for $\eta>8.4$
 University \& INFN Catanía EDS'09, CERN29 Jun -3 July 2009

detectors

- Cathode Strip Chambers (CSC) Mounted in front of HadronForward calorimeter of CMS - $3.1<\mid \eta<4.7$
- 5 planes with 3 coordinates/plane - 6 trapežoidal CSC detectors/plane
- Resolution $\sigma \sim 0.8 \mathrm{~mm}$
- Gas Electron Multiplier(GEM) MACRM Mounted in front of CASTOR
- $5.3<\mid \eta<6.5$
- 10 planes formed by 20 GEM semi-circular modules
- Radial position from strips, η, ϕ from pads
- Resolution $\sigma_{\text {strif }} \sim 70 \mu \mathrm{~m}$

Forward Experiments at LHC
EDS'09,CERN 29 Jun -3 July 2009

2 towers 24 cm long stacked vertically with 5 mm gap
Lower: $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ area
Upper: $4 \mathrm{~cm} \times 4 \mathrm{~cm}$ area

Absorber
22 tungsten layers $7 \mathrm{~mm}-14 \mathrm{~mm}$ thick
$\left(W: X_{0}=3.5 \mathrm{~mm}, R_{M}=9 \mathrm{~mm}\right)$

Alessia Tricomi
University\& INF N Catania

Forward ExperimentsatLHC EDS'09,CERN 29 Jun - 3 July 2009
${ }^{70} \mathrm{THEMP}_{2}$
4 pairs of scintillating fiber ${ }^{2}$ layers for tracking purpose (6, 10, 32, 38 rel.)

2 towers 24 cm long stacked on their edges and offset from one another

Lower: $2.5 \mathrm{~cm} \times 2.5 \mathrm{~cm}$
Upper: $3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm}$

Alessía Tricomi
University\& INFNCatanía

Forward Experiments at LHC
EDS'09, CERN 29 Jun - 3 July 2009

Alessia Tricomi
A vertical beam crossing angle >0 University

Forward Experimentsat LHC

$200 \mathrm{GeV} / \mathrm{c}$ electron, 2 cm
Number of particles
correction

Fomvard Experiments at LHC

Gamma Energy Spectrum of 20 mm calorimeter at Center

Gamma Energy Spectrum

 of $\mathbf{2 0} \mathbf{m m}$ calorimeter at 30 mm shift QGSJETIl:used model QGSJET: $\chi^{2} / D O F=107 / 125$ DPMJET $3: x^{2} / D O F=224 / 125$ SYBILL: $x^{2} / \mathrm{DOF}=816 / 125$

Gamma Energy [GeV]
\mathbf{p}° produced at collision can be extracted byusing gamma pair events Powerful tool to calibrate the energy scale and also to eliminate beam-gas $B G$

"Normal" Position

"Low" Position

Alessía Tricomi University \& INFNCatania

EDS'09,CERN 29 Jun - 3 July 2009
in the slot used for beam monitor
Arm 1
$>10^{7}$ proton on target (special setting from the SP S people) normans.
Dedicated"trigger on both towers of the calorimeterhas beern"used
$\approx 250 \pi^{\circ}$ events triggered (in a quite huge background) and on disk

Main problems:
\checkmark low photon energy $(\geq 20$ GeV)
\checkmark Direct protons in the towers
\checkmark Multi hits in the same tower

1. One Particle Incident on each Calorimeter	0.0040
2. Gamma Incident on each Calorimeter	0.00032
3. Invariant mass cut $\left(125 \mathrm{MeV}<\mathrm{M}_{2 \gamma}<145 \mathrm{MeV}\right)$	0.0007

Table 6: Event rate of z^{0} production per inclastic collision for Detector \#1. Here the $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ calorimeter is at the center of beam-pipe and the beam crossing angle is zero.

1. One Particle Incident on each Calorimeter	0.0006
2. Gamma Incident on each Calorimeter	0.0052
3. Invariant mass cut ($125 \mathrm{MeV}<\mathrm{M}_{\gg}<145 \mathrm{MeV}$)	0.0011

Table 7: Event rate of π^{0} production per inclastic collision for Detector \#1. Here the $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ tower is at the center of the neutral particle flux and te beam crossing angle is $140 \mu \mathrm{rad}$.

1. One Particle Incident on each Calorimeter	0.0080
2. Gamma Incident on each Calorimeter	0.0063
3. Invariant mass cat ($125 \mathrm{MeV}<\mathrm{M}_{7 \boldsymbol{r}}<145 \mathrm{MeV}$)	0.0015

Table 8: Event rate of π^{0} production per inclastic collision for Detector \#2. Here the $2.5 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ calorimeter is at the oenter of neutral particle flux and the beam crossing angle is $0 \mu \mathrm{rad}$.

Forward Experimentsat LHC EDS'09, CERN 29 Jun - 3 July 2009

The LFAeffect

INFN

Alessia Tricomi University\& INFNCatanía
γ rate

	$20 \mathrm{~mm} \times 20 \mathrm{~mm}$	$40 \mathrm{~mm} \times 40 \mathrm{~mm}$
1. Sum E $>100 \mathrm{GeV}$	0.0674	0.0465
2. One Gamma Incident	0.0478	0.0353
3. One Hadron Incident	0.0146	0.0052
4. One Gamma in fiducial	0.0297	0.0272
5. One Neutron in fiducial	0.0006	0.0001

Table 3: Event rate of single γ 's and hadrons per inelastic collision for the Detextor \#1. Here the $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ touer is at the center of beam-pipe and without beam crowsing angle.

	$20 \mathrm{~mm} \times 20 \mathrm{~mm}$	$40 \mathrm{~mm} \times 40 \mathrm{~mm}$
1. Sum E $>100 \mathrm{GeV}$	0.0674	0.0809
2. One Gamma Incident	0.0478	0.0623
3. One Hadron Incident	0.0145	0.0081
4. One Gamma in fiducial	0.0297	0.0511
5. One Neutron in fiducial	0.0006	0.0002

Table 4: Event rate of single γ^{\prime} s and hadrons per inclastic collision for the Detector \#1. Here the $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ tower is at the center of the neutral particle flux and with beam crossing angle of $140 \mu \mathrm{rad}$.

	$20 \mathrm{~mm} \times 20 \mathrm{~mm}$	$40 \mathrm{~mm} \times 40 \mathrm{~mm}$
1. Sum E > 700 GeV	0.0949	0.0721
2. One Gamma Incident	0.0654	0.0528
3. One Hadron Incident	0.0198	0.0078
4. One Gamma in fiducial	0.0445	0.0427
5. One Neutron in fiducial	0.0009	0.0002

Erward Experiments at dublibf for the Detector \#2

INFN 'Analysis' of Beym Gas events
Wegot 316 F Ctriggers in $8.273034 \mathrm{BPTX}: \mathrm{D}_{2}=116$
2.10^{9} protons/bunch
Total \# of protons: $\mathrm{N}_{\mathrm{p}}=1.7 \times 10^{16}$
We try to estimate the gas densíty ρ from this rate:

$$
\begin{aligned}
& \quad N_{t}=N_{p}^{*} L^{*} \sigma^{*} \rho \\
& L=\text { effectivelenght } \sim 100 \mathrm{~m} \\
& \sigma=\text { Cross section } \sim 80 \mathrm{mbarn}=80 \times 10^{-31} \mathrm{~m}^{2}
\end{aligned}
$$

Wefind: $\rho=8.5 \times 10^{12} \mathrm{H}_{\mathrm{m}^{3}}=4.2 \times 1 \mathrm{~m}^{12} \mathrm{H}_{2} \mathrm{~m}^{2} / \mathrm{m}^{3}$
Erom, the LHCProject Report\#783: $\rho=10^{12} \mathrm{H}_{2} / \mathrm{m}^{3}$
From the pressure measurement in April 2008: $\mathrm{\rho} \sim 10^{12} \mathrm{H}_{2} / \mathrm{m}^{3}$
~CONSISTENT!!!!!!!!!!!

Alessia Tricomi
University \& INFN Catanía

Forward ExperimentsatLHC
EDS'o9, CERN 29 Jun-3 July 2009

■ J / ψ measurement in μ-spectrometer: $\mathrm{xg}(\mathrm{x})$ in the proton at $\mathrm{x}_{2} \sim 10^{-5}$:

- Impact of $1 \mathrm{fb}^{-1} \mathrm{LHCb}$ data for forward $\gamma^{*}(\mathrm{M}=14 \mathrm{GeV})$, W,Z production on the gluon distribution uncertainty:

Luch

Forward Experiments at LHC EDS'09, CERN 29 Jun - 3 July 2009
D. D'Enterría (Trieste May 09)

